Skip to main content
Log in

Velocity Field Diagnostics of the Quiet Sun Using the Lambda-Meter Method: Si I 1082.7 nm Line

  • SOLAR PHYSICS
  • Published:
Kinematics and Physics of Celestial Bodies Aims and scope Submit manuscript

Abstract

The validity of the lambda-meter method for determining the quiet Sun velocity field using the Si I 1082.7 nm line is investigated. To this end, the intensity profiles of this line were calculated for the solar disk center by means of NLTE simulations in a three-dimensional model atmosphere describing the small-scale magnetic activity in the quiet solar photosphere. The velocity field recovered using the lambda-meter method from theoretical NLTE profiles of the Si I 1082.7 nm line was compared with the velocity field from the model atmosphere. The influence of atmospheric and instrumental effects on the results is considered. These effects are atmospheric turbulence and light diffraction by telescope aperture, such as VTT, GREGOR, and EST/DKIST. It is shown that, in the case of observations of the Si I 1082.7 nm line on large-diameter telescopes like GREGOR and EST/DKIST with a spatial resolution substantially better than 0.27″, the lambda-meter method provides reliable values of the velocity field for the lower and upper solar photosphere. For the middle photosphere, the correlation between the inferred and the real velocities is worse, particularly when using the smaller diameter telescopes like VTT. Under a poor spatial resolution exceeding 2″, information about the velocity field can be obtained only for the uppermost photospheric layers. For this case, the lambda-meter velocities turn out to be noticeably smaller than the real values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. I. N. Atroshchenko, A. S. Gadun, S. I. Gopasyuk, E. A. Gurtovenko, A. A. Kmito, E. V. Kononovich, R. I. Kostyk, et al., Variations of Global Characteristics of the Sun (Naukova Dumka, Kyiv, 1991) [in Russian].

    Google Scholar 

  2. L. Auer, P. Fabiani Bendicho, and J. Trujillo Bueno, “Multidimensional radiative transfer with multilevel atoms: I. ALI method with preconditioning of the rate equations,” Astron. Astrophys. 292, 599–615 (1994).

    ADS  Google Scholar 

  3. H. Balthasar, P. Gömöry, S. J. González Manrique, C. Kuckein, A. Kučera, et al., “Spectropolarimetric observations of an arch filament system with GREGOR” (2018). https://ui.adsabs.harvard.edu. arXiv 1804.01789vl [astro-ph.SR]

  4. S. Bard and M. Carlsson, “Constructing computationally tractable models of Si I for the 1082.7 nm transition,” Astrophys. J. 682, 1376–1385 (2008).

    Article  ADS  Google Scholar 

  5. D. Sh. Bloomfield, A. Lagg, and S. K. Solanki, “The nature of running penumbral waves revealed,” Astrophys. J. 671, 1005–1012 (2007).

    Article  ADS  Google Scholar 

  6. R. Centeno, M. Collados, and J. Trujillo Bueno, “Spectropolarimetric investigation of the propagation of magnetoacoustic waves and shock formation in sunspot atmospheres,” Astrophys. J. 640, 1153–1162 (2006).

    Article  ADS  Google Scholar 

  7. R. Centeno, M. Collados, and J. Trujillo Bueno, “Wave propagation and shock formation in different magnetic structures,” Astrophys. J. 692, 1211–1220 (2009).

    Article  ADS  Google Scholar 

  8. R. Centeno, J. Trujillo Bueno, H. Uitenbroek, and M. Collados, “The influence of coronal EUV irradiance on the emission in the He I 10830 Å and D3 multiplets,” Astrophys. J. 677, 742–750 (2008).

    Article  ADS  Google Scholar 

  9. M. Collados, R. López, E. Páez, E. Hernández, M. Reyes, et al., “GRIS: The GREGOR Infrared Spectrograph,” Astron. Nachr. 333, 872–879 (2012).

    Article  ADS  Google Scholar 

  10. T. del Pino Alemán, J. Stěpán, J. Trujillo Bueno, and N. Shchukina, “A novel investigation of the small-scale magnetic activity of the quiet Sun via the Hanle effect in the Sr 14607 Å line,” Astrophys. J. 863, 164–183 (2018).

    Article  ADS  Google Scholar 

  11. T. Felipe, M. Collados, E. Khomenko, C. Kuckein, A. Asensio Ramos, H. Balthasar, T. Berkefeld, C. Denker, A. Feller, M. Franz, et al., “Three-dimensional structure of a sunspot light bridge,” Astron. Astrophys. 596, A59–A71 (2016).

    Article  Google Scholar 

  12. T. Felipe, E. Khomenko, and M. Collados, “Magneto-acoustic waves in sunspots: First results from a new three-dimensional nonlinear magnetohydrodynamic code,” Astrophys. J. 719, 357–377 (2010).

    Article  ADS  Google Scholar 

  13. T. Felipe, E. Khomenko, M. Collados, and C. Beck, “Multi-layer study of wave propagation in sunspots,” Astrop-hys. J. 722, 131–144 (2010).

    Article  ADS  Google Scholar 

  14. D. L. Fried, “Optical resolution through a randomly inhomogeneous medium for very long and very short exposures,” J. Opt. Soc. Am. 56, 1372–1379 (1966).

    Article  ADS  Google Scholar 

  15. J. Joshi, A. Lagg, S. K. Solanki, A. Feller, M. Collados, D. Orozco Suárez, R. Schlichenmaier, M. Franz, H. Balthasar, Denker C, et al., “Upper chromospheric magnetic field of a sunspot penumbra: Observations of fine structure,” Astron. Astrophys. 596, A8–A15 (2016).

    Article  Google Scholar 

  16. J. Jurčák, M. Collados, J. Leenaarts, M. van Noort, and R. Schlichenmaier, “Recent advancements in the EST project. 2019,” Adv. Space Res. 63, 1389–1395 (2019).

    Article  ADS  Google Scholar 

  17. S. L. Keil, T. R. Rimmele, J. Wagner, D. Elmore, and ATST Team, “ATST: the largest polarimeter,” in Proc. 6th Solar Polarization Conf., Sheraton Lahaina, Maui, HI, May 30 – June 4,2010, Ed. by J. R. Kuhn, D. M. Harrington, H. Lin, S. V. Berdyugina, J. Trujillo-Bueno, S. L. Keil, and T. Rimmele (ASP, San Francisco, CA, 2011), in Ser.: ASP Conference Series, Vol. 437, pp. 319–328.

  18. E. Khomenko and M. Collados, “Oscillations and waves in sunspots,” Living Rev. Sol. Phys. 12 (6), 1–78 (2015).

    Article  ADS  Google Scholar 

  19. E. V. Khomenko, R. I. Kostik, and N. G. Shchukina, “Five-minute oscillations above granules and intergranular lanes,” Astron. Astrophys. 369, 660–671 (2001).

    Article  ADS  Google Scholar 

  20. D. Korff, “Analysis of a method for obtaining near-diffraction-limited information in the presence of atmospheric turbulence,” J. Opt. Soc. Am. 63, 971–980 (1973).

    Article  ADS  Google Scholar 

  21. R. I. Kostik and E. V. Khomenko, “Observations of a bright plume in solar granulation,” Astron. Astrophys. 476, 341–347 (2007).

    Article  ADS  Google Scholar 

  22. R. Kostik, E. Khomenko, and N. Shchukina, “Solar granulation from photosphere to low chromosphere observed in Ba II 4554 Å line,” Astron. Astrophys. 506, 1405–1414 (2009).

    Article  ADS  Google Scholar 

  23. R. I. Kostyk and N. G. Shchukina, “Fine structure of convective motions in the solar photosphere: Observations and theory,” Sov. Astron. 48, 769–780 (2004).

    Google Scholar 

  24. J. Koza, “Sensitivity of selected Ba II, Fe I, Fe II, and Cr I spectral lines to velocity in quiet solar atmosphere,” Sol. Phys. 266, 261–275 (2010).

    Article  ADS  Google Scholar 

  25. C. Kuckein, V. Martínez Pille, and R. Centeno, “An active region filament studied simultaneously in the chromosphere and photosphere. II. Doppler velocities,” Astron. Astrophys. 542, A112–A125 (2012).

    Article  ADS  Google Scholar 

  26. J. L. Kulander and J. T. Jefferies, “Inference of velocities from line asymmetries,” Astrophys. J. 146, 194–206 (1966).

    Article  ADS  Google Scholar 

  27. A. Lagg, B. Lites, J. Harvey, S. Gosain, and R. Centeno, “Measurements of photospheric and chromospheric magnetic fields,” Space Sci. Revs. 210 (1–4), 37–76 (2017).

    Article  ADS  Google Scholar 

  28. E. Landi Degl’Innocenti and M. Landolfi, Polarization in Spectral Lines (Kluwer, Dordrecht, 2004).

  29. B. W. Lites, S. L. Keil, G. B. Scharmer, and A. A. Wyller, “Steady flows in active regions observed with the He I 10830 Å line,” Sol. Phys. 97, 35–49 (1985).

    Article  ADS  Google Scholar 

  30. S. A. Matthews, M. Collados, M. Mathioudakis, and R. Erdelyi, “The European Solar Telescope (EST),” SPIE Conf. Ser. 9908, 990809–990817 (2016).

  31. M. Rempel, “Numerical simulations of quiet Sun magnetism: On the contribution from a small-scale dynamo,” Astrophys. J. 789, 131–153 (2014).

    Article  ADS  Google Scholar 

  32. N. G. Shchukina, V. L. Olshevsky, and E. V. Khomenko, “The solar Ba II 4554 Å line as a Doppler diagnostic: NLTE analysis in 3D hydrodynamical model,” Astron. Astrophys. 506, 1393–1404 (2009).

    Article  ADS  Google Scholar 

  33. N. Shchukina, A. Sukhorukov, and J. Trujillo Bueno, “Non-LTE determination of the silicon abundance using a three-dimensional hydrodynamical model of the solar photosphere,” Astrophys. J. 755, 176–184 (2012).

    Article  ADS  Google Scholar 

  34. N. Shchukina, A. Sukhorukov, and J. Trujillo Bueno, “A Si I atomic model for NLTE spectropolarimetric diagnostics of the 10 827 Å line,” Astron. Astrophys. 603, A98–A113 (2017).

    Article  ADS  Google Scholar 

  35. N. G. Shchukina and J. Trujillo Bueno, “The diagnostic potential of the weak field approximation for investigating the quiet Sun magnetism: the Si I 10 827 Å line,” Astron. Astrophys. 628, A47 (2019).

    Article  ADS  Google Scholar 

  36. N. Shchukina and J. Trujillo Bueno, “The impact of surface dynamo magnetic fields on the solar iron abundance,” Astron. Astrophys. 579, A112–A124 (2015).

    Article  ADS  Google Scholar 

  37. N. Shchukina and J. Trujillo Bueno, “The iron line formation problem in three-dimensional hydrodynamic models of solar-like photospheres,” Astrophys. J. 550, 970–990 (2001).

    Article  ADS  Google Scholar 

  38. D. Soltau, R. Volkmer, O. von der Lühe, and T. Berkefeld, “Optical design of the new solar telescope GREGOR,” Astron. Nachr. 333, 847–853 (2012).

    Article  ADS  Google Scholar 

  39. R. Stebbins and P. R. Goode, “Waves in the solar photosphere,” Sol. Phys. 110, 237–253 (1987).

    Article  ADS  Google Scholar 

  40. A. V. Sukhorukov, “Non-LTE formation of the Si I λ 1082.7 nm line in one- and three-dimensional models of the solar atmosphere,” J. Phys. Stud. 16, 1903–1913 (2012).

    Google Scholar 

  41. A. V. Sukhorukov and N. G. Shchukina, “NLTE formation of the solar silicon spectrum: Silicon abundance in one-dimensional models of the solar atmosphere,” Kinematics Phys. Celestial Bodies. 28, 169–182 (2012).

    Article  ADS  Google Scholar 

  42. A. Tritschler, T. R. Rimmele, S. Berukoff, R. Casini, J. R. Kuhn, H. Lin, M. P. Rast, J. P. McMullin, W. Schmidt, F. Wöger, and DKIST Team, “Daniel K. Inouye Solar Telescope: High-resolution observing of the dynamic Sun,” Astron. Nachr. 337, 1064–1069 (2016).

    Article  ADS  Google Scholar 

  43. J. Trujillo Bueno, “The generation and transfer of polarized radiation in stellar atmospheres,” in Proc. Stellar Atmosphere Modeling, Tübingen, Germany, Apr. 8–12,2002, Ed. by I. Hubeny, D. Mihalas, and K. Werner (ASP, San Francisco, CA, 2003), in Ser.: ASP Conference Series, Vol. 288, pp. 551–582.

Download references

Funding

The study was funded by the National Academy of Sciences of Ukraine.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. G. Shchukina or R. I. Kostyk.

Additional information

Translated by M. Chubarova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shchukina, N.G., Kostyk, R.I. Velocity Field Diagnostics of the Quiet Sun Using the Lambda-Meter Method: Si I 1082.7 nm Line. Kinemat. Phys. Celest. Bodies 36, 1–11 (2020). https://doi.org/10.3103/S0884591320010055

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0884591320010055

Keywords:

Navigation