Skip to main content
Log in

Research and Development of Bio-Degasification Technologies for Coal Fields

  • Mineral Mining Technology
  • Published:
Journal of Mining Science Aims and scope

Abstract

The current situation and development trends in the biological degasification of coal are reviewed. It is shown that methane desorption is a consequence of rock mass destruction by activity of microorganisms and releasing bacterial metabolites. The influence of microorganisms on coal as a function of a prevailing microbial community and its variety, access of oxygen and nutritious substrates is observed. Advancement of the biological method for coal field degasification based on the methanotrophy is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Khautiev, A.M., Justification and Development of Coal Seam Degasification Method Based on Cyclical Gas-Dynamic Impacts, Cand. Tech. Sci. Dissertation, Moscow, 2015.

    Google Scholar 

  2. Ivanov, M.V., Microbiological Method of Methane Control in Coal Mines, Yubileinyi sbornik r 70-letiyu Instituta mikrobiologii im. S. N. Vernadskogo (Festschrift towards the 70th Anniversary of the Vernadsky Institute of Microbiology), V.F. Gal’chenko (Ed.), Moscow: Nauka, 2004.

    Google Scholar 

  3. Breas, O., Guillou, C., Reniero, F., and Wada, E., The Global Methane Cycle: Isotopes and Mixing Ratios, Sources and Sinks, Isotopes Environ., Health Stud., 2001, vol. 37, pp. 257–379.

    Article  Google Scholar 

  4. Zorin, A.N., Khalimendik Yu.M., and Kolesnikov, V.G., Mekhanika razrusheniya gornogo massiva i ispol’zovabnie ego energii pri dobyche poleznykh iskopaemykh (Fracture Mechanics of Rock Mass and Use of the Fracture Energy in Mineral Mining), Moscow: Nedra, 2001.

    Google Scholar 

  5. Artem’ev, V.B., Korshunov, G.I., Loginov, A.K., and Shik, V.M., Dinamicheskie formy proyavlenii gornogo davleniya (Dynamic Forms of Events of Rock Pressure), Saint-Petersburg: Nauka, 2009.

    Google Scholar 

  6. Kozlovskii, E.E. (Ed.), Gornaya entsiklopediya (Mining Encyclopedia), Vol. 3, Moscow: Sov. entsiklopediya, 1987, 425 p.

    Google Scholar 

  7. Kozlovskii, E.E. (Ed.), Gornaya entsiklopediya (Mining Encyclopedia), Vol. 5, Moscow: Sov. entsiklopediya, 1989, 171 p.

    Google Scholar 

  8. Kurlenya, M.V., Serdyukov, S.V., Patutin, A.V., and Shilova, T.V., Stimulation of Underground Degassing in Coal Seams by Hydraulic Fracturing Method, J. Min. Sci., 2017, vol. 53, no. 6, pp. 975–980.

    Article  Google Scholar 

  9. Serdyukov, S.V., Kurlenya, M.V., Rybalkin, L.A., and Shilova, T.V., Hydraulic Fracturing Effect on Filtration Resistance in Gas Drainage Hole Area in Coal, J. Min. Sci., 2019, vol. 55, no. 2, pp. 175–184.

    Article  Google Scholar 

  10. Kurlenya, M.V., Tsupov, M.N., and Savchenko, A.V., Influence of Bachatsky Earthquake on Methane Emission in Roadways in Coal Mines, J. Min. Sci., 2019, vol. 55, no. 5, pp. 3–9.

    Article  Google Scholar 

  11. Prospects of Gas Production from Coal in Russia. Gazprom. https://www.gazprom.ru/about/production/extraction/metan/.

  12. Yurovskii, A.Z., Kapilash, G.P., and Mangubi, B.V., Methane Control in Coal Mines By Means of Methane-Consuming Bacteria, Preliminary Report, Ugol’, 1939, no. 7.

  13. Bulankinа, M.A., Lysak, L.V., and Zvyagintsev, D.G., Microorganisms in Lignite, Izv. RAN. Ser.: Biol., 2007, vol. 2, pp. 239–243.

    Google Scholar 

  14. Kovalenko, G.A., Selective Oxidation of Gaseous Hydrocarbons by Bacterial Cells, Uspekhi Khimii, 1996, vol. 65, no. 7, pp. 676–691.

    Google Scholar 

  15. Vick, S., Greenfield, P., Pinetown, K., Sherwood, N., Gong, S., Tetu, S., Midgley, D., and Paulsen, I., Succession Patterns and Physical Niche Partitioning in Microbial Communities from Subsurface Coal Seams, Science, 2019, vol. 12, pp. 152–167.

    Google Scholar 

  16. Wei, M., Yu, Z., and Zhang, H., Microbial Diversity and Abundance in a Representative Small-Production Coal Mine of Central China, Energy Fuels, 2013, vol. 27, pp. 3821–3829.

    Article  Google Scholar 

  17. Malashenko, Yu.R., Sokolov, I.G., and Romanovskaya, V.A., Mikrobnyi metabolizm nerostovykh substratov (Microbial Metabolism of Non-Growth Substrates), Kiev: Naukova dumka, 1987.

    Google Scholar 

  18. Han, B., Chen, Y., Abell, G., Jiang, H., Bodrossy, L., Zhao, J., Murrell, J., and Xing, X-H., Diversity and Activity of Methanotrophs in Alkaline Soil from A Chinese Coal Mine, FEMS Microbiology Ecology, 2009, vol. 70, issue 2, pp. 196–207. DOI: org/10.1111/j.1574-6941.2009.00707.x.

    Article  Google Scholar 

  19. Ivanov, M.V., Nesterov, A.I., Namsaraev, B.B., Gal’chenko, V.F., and Nazarenko, A.V., Propagation and Geochemical Activity of Methanotrophs in Coal Mine Water, Mikrobiologiya, 1978, vol. 47, pp. 489–494.

    Google Scholar 

  20. Söhngen, N.L. Uber Bakterien, Welche Methan ab Kohlenstoffnahrung und Energiequelle Gebrauchen, Parasitenkd. Infectionskr., 1906, vol. 15, pp. 513–517.

    Google Scholar 

  21. Dunfield, P. and Dedysh, S., Methylocella: A Gourmand among Methanotrophs, Trends Microbiol., 2014, vol. 22, pp. 368–369.

    Article  Google Scholar 

  22. Myaken’kii, V.I. and Kurdish, I.K., Mikrobiologicheskoe okislenie metana ugol’nykh shakht (Microbiological Oxidation of Coal Mine Methane), Kiev: Naukova dumka, 1991.

    Google Scholar 

  23. Vasyuchkov, Yu.F., Technology of Methane Release Control in Coal Mines, Izv. TulGU. Nauki o Zemle, 2018, issue 4, pp. 168–179.

    Google Scholar 

  24. Vasyuchkov, Yu.F., Sovershenstvovanie upravleniya metanovydeleniem v ochistnykh zaboyakh mikrobiologichsekimi sposobami (Improvement of Methane Release Control in Longwall Face Areas by Microbiological Methods), Moscow: TSNEI-ugol’, 1989.

    Google Scholar 

  25. Ismailov, A.S., Razrabotka metodov bor’by s metanov v shakhtakh s ispol’zovaniem mikrobiologichskogo vozdeistviya na ugol’nye plasty cherez skvazhiny s poverkhnosti (Development of Methane Control in Mines Using Microbiological Treatment in Boreholes Drilled from Surface), Moscow: MGI, 1985.

    Google Scholar 

  26. Ivanov, M.I., Microbiological Methods of Methane Control in Coal Mines, Vestn. AN SSSR. Ser.: Biol., 1988, no. 3, pp. 16–26.

    Google Scholar 

  27. Myaken’kii, V.I., Justification of Microbiological Method for Methane Content Reduction in Goafs, Ugol’ Ukrainy, 1983, no. 12, pp. 32–33.

    Google Scholar 

  28. Rzhevsky, V.V., Bratchenko, B.F., Burchakov, A.S., and Nozhkin, N.V., Upravlenie svoistvami i sostoyaniem ugol’nykh plastov s tsel’yu bor’by s osnovnymi opasnostyami v shakhtakh (Controlling Properties and Behavior of Coal Seams to Prevent Major Hazards in Mines), Moscow: Nedra, 1984.

    Google Scholar 

  29. Xing, X., Jiang, H., Jiang, P.-X., Zhang, C., Chen, Y., and Murrell, J., Bioengineering of Methanotrophic Consortia for Reduction of Methane Emission in Coal Mines, J. Biotechnology, 2010, vol. 150, pp. S541–S542. DOI: 10.1016/j.jbiotec.2010.09.892.

    Article  Google Scholar 

  30. Stępniewska, Z., Pytlak, A., and Kuźniar, A., Methanotrophic Activity in Carboniferous Coalbed Rocks, Int. J. Coal Geology, 2013, vol. 106, pp. 1–10.

    Article  Google Scholar 

  31. Thielemann, T., Luеcke, A., Schleser, G., and Littke, R., Methane Exchange between Coal-Bearing Basins and the Atmosphere: the Ruhr Basin and the Lower Rhine Embayment, Germany, Organic Geochemistry, 2000, vol. 31, pp. 1387–1408.

    Article  Google Scholar 

  32. Wei, M., Yu, Z., and Zhang, H., Molecular Characterization of Microbial Communities in Bioaerosols of a Coal Mine by 454 Pyrosequencing and Real-Time PCR, J. Environmental Sciences, 2015, vol. 30, pp. 241–251.

    Article  Google Scholar 

  33. Karthikeyan, O., Chidambarampadmavathy, K., Nadarajan, S., Lee, P., and Heimann, K., Effect of CH4/O2 Ratio on Fatty Acid Profile and Polyhydroxybutyrate Content in a Heterotrophic-Methanotrophic Consortium, Chemosphere, 2015, vol. 141, pp. 235–242.

    Article  Google Scholar 

  34. Cao, Q., Liu, X., Ran, Y., Li, Z., and Li, D., Methane Oxidation Coupled to Denitrification under Microaerobic and Hypoxic Conditions in Leach Bed Bioreactors, Science of the Total Environment, 2019, vol. 649, pp. 1–11.

    Article  Google Scholar 

  35. Apel, W., Dugan, P., and Wiebe, M., Use of Methanotrophic Bacteria in Gas Phase Bioreactors to Abate Methane in Coal Mine Atmospheres, Fuel, 1991, vol. 70, pp. 1001–1003.

    Article  Google Scholar 

  36. Sly, L., Bryant, L., Cox, J., and Anderson, J., Development of a Biofiter for the Removal of Methane from Coal Mine Ventilation Atmospheres, Appl. Microbiol. Biotechnol., 1993, vol. 39, pp. 400–404.

    Article  Google Scholar 

  37. Kovalenko, G.A., Catalysis by Ferments and Non-Growing Bacterial Cells Immobilized on Inorganic Bearers, Doc. Chem. Sci. Dissertation Summary, Novosibirsk, 2006.

    Google Scholar 

  38. Bondar’, V.A., Vasyuchkov, Yu.F., Zakharchenko, V.N., Zyakun, A.M., Ismailov, A.S., Kachak, V.V., and Nesterov, A.I., Patent SU 1 475 249 A1, Byull. Izobret., 1999, no. 3.

    Google Scholar 

  39. Lalov, V.V., Nazarov, A.V., and Osokina, N.V., RF patent no. 2064016, Byull. Izobret., 1996, no. 4.

    Google Scholar 

  40. Gou, Z., Xing, X.-H., Luo, M., Jiang, H., Han, B., Wu, H., Wang, L., and Zhang, F., Functional Expression of the Particulate Methane Mono-Oxygenase Gene in Recombinant Rhodococcus erythropolis, FEMS Microbiology Letters, 2006, vol. 263, issue 2, pp. 136–141.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Savchenko.

Additional information

Russian Text © The Author(s), 2019, published in Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh, 2019, No. 6, pp. 79-88.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurlenya, M.V., Emel’yanova, E.K., Andreeva, I.S. et al. Research and Development of Bio-Degasification Technologies for Coal Fields. J Min Sci 55, 930–937 (2019). https://doi.org/10.1134/S1062739119066319

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062739119066319

Keywords

Navigation