Skip to main content
Log in

On solutions of a partial integro-differential equation in Bessel potential spaces with applications in option pricing models

  • Original Paper
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this paper we focus on qualitative properties of solutions to a nonlocal nonlinear partial integro-differential equation (PIDE). Using the theory of abstract semilinear parabolic equations we prove existence and uniqueness of a solution in the scale of Bessel potential spaces. Our aim is to generalize known existence results for a wide class of Lévy measures including with a strong singular kernel. As an application we consider a class of PIDEs arising in the financial mathematics. The classical linear Black–Scholes model relies on several restrictive assumptions such as liquidity and completeness of the market. Relaxing the complete market hypothesis and assuming a Lévy stochastic process dynamics for the underlying stock price process we obtain a model for pricing options by means of a PIDE. We investigate a model for pricing call and put options on underlying assets following a Lévy stochastic process with jumps. We prove existence and uniqueness of solutions to the penalized PIDE representing approximation of the linear complementarity problem arising in pricing American style of options under Lévy stochastic processes. We also present numerical results and comparison of option prices for various Lévy stochastic processes modelling underlying asset dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of mathematical functions with formulas, graphs, and mathematical tables, volume 55 of National Bureau of Standards Applied Mathematics Series. U.S. Government Printing Office, Washington, D.C (1964)

  2. Alvarez, O., Tourin, A.: Viscosity solutions of nonlinear integro-differential equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 13(3), 293–317 (1996)

    Article  MathSciNet  Google Scholar 

  3. Applebaum, D.: Lévy Processes and Stochastic Calculus volume 116 of Cambridge Studies in Advanced Mathematics, 2nd edn. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  4. Arregui, I., Salvador, B., Ševčovič, D., Vázquéz, C.: Total value adjustment for european options with two stochastic factors. Mathematical model, analysis and numerical simulation. Comput. Math. Appl. 76(4), 725–740 (2018)

    Article  MathSciNet  Google Scholar 

  5. Arregui, I., Salvador, B., Ševčovič, D., Vázquéz, C.: Mathematical analysis of a nonlinear PDE model for European options with counterparty risk. Comptes Rendus Mathematique 357(3), 252–257 (2019)

    Article  MathSciNet  Google Scholar 

  6. Awatif, S.: Équations d’Hamilton–Jacobi du premier ordre avec termes intégro-différentiels. II. Existence de solutions de viscosité. Commun. Partial Differ. Equ. 16(6–7), 1075–1093 (1991)

    Article  MathSciNet  Google Scholar 

  7. Barles, G., Buckdahn, R., Pardoux, E.: Backward stochastic differential equations and integral-partial differential equations. Stoch. Stoch. Rep. 60(1–2), 57–83 (1997)

    Article  MathSciNet  Google Scholar 

  8. Barndorff-Nielsen, O.E., Levendorskiĭ, S.Z.: Feller processes of normal inverse Gaussian type. Quant. Finance 1, 318–331 (2001)

    Article  MathSciNet  Google Scholar 

  9. Bensoussan, A., Lions, J.-L.: Contrôle impulsionnel et inéquations quasi variationnelles, volume 11 of Méthodes Mathématiques de l’Informatique [Mathematical Methods of Information Science]. Gauthier-Villars, Paris (1982)

  10. Carr, P., Geman, H., Madan, D.B., Yor, M.: The fine structure of asset returns: an empirical investigation. J. Bus. 75, 305–332 (2002)

    Article  Google Scholar 

  11. Carr, P., Madan, D.B.: Option valuation using the fast Fourier transform. J. Comput. Finance 2(4), 61–73 (1999)

    Article  Google Scholar 

  12. Cont, R., Tankov, P.: Financial Modeling with Jump Processes. Chapman & Hall/CRC, Boca Raton (2004)

    MATH  Google Scholar 

  13. Crandall, M.G., Ishii, H., Lions, P.-L.: User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. (N.S.) 27(1), 1–67 (1992)

    Article  MathSciNet  Google Scholar 

  14. Cruz, J., Ševčovič, D.: Option pricing in illiquid markets with jumps. Appl. Math. Finance 25(4), 389–409 (2018)

    Article  MathSciNet  Google Scholar 

  15. d’Halluin, Y., Forsyth, P., Labahn, G.: A penalty method for American options with jump diffusion processes. Numerische Mathematik 97(2), 321–352 (2004)

    Article  MathSciNet  Google Scholar 

  16. Florescu, I., Liu, R., Mariani, M.C.: Solutions to a partial integro-differential parabolic system arising in the pricing of financial options in regime-switching jump diffusion models. Electron. J. Differ. Equ. 231, 12 (2012)

    MathSciNet  MATH  Google Scholar 

  17. Garroni, M.G., Menaldi, J.L.: Second Order Elliptic Integro-differential Problems, volume 430 of Chapman & Hall/CRC Research Notes in Mathematics. Chapman & Hall/CRC, Boca Raton (2002)

    Book  Google Scholar 

  18. Henry, D.: Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Mathematics, vol. 840. Springer, Berlin (1981)

    Book  Google Scholar 

  19. Kou, S.: A jump-diffusion model for option pricing. Manag. Sci. 48, 1086–1101 (2002)

    Article  Google Scholar 

  20. Kwok, Y.-K.: Mathematical Models of Financial Derivatives, 2nd edn. Springer Finance, Springer, Berlin (2008)

    MATH  Google Scholar 

  21. Lamberton, D., Lapeyre, B.: Introduction to Stochastic Calculus Applied to Finance. Financial Mathemathics Series. Chapman and Hall/CRC, New York (2007)

    MATH  Google Scholar 

  22. Lauko, M., Ševčovič, D.: Comparison of numerical and analytical approximations of the early exercise boundary of American put options. ANZIAM J. 51(4), 430–448 (2010)

    Article  MathSciNet  Google Scholar 

  23. Lesman, D.C., Wang, S.: Penalty approach to a nonlinear obstacle problem governing American put option valuation under transaction costs. Appl. Math. Comput. 251, 318–330 (2015)

    MathSciNet  MATH  Google Scholar 

  24. Madan, D.B., Carr, P., Chang, E.C.: The Variance Gamma process and option pricing. Eur. Finance Rev. 2, 79–105 (1998)

    Article  Google Scholar 

  25. Mariani, M.C., SenGupta, I.: Solutions to an integro-differential parabolic problem arising in the pricing of financial options in a Lévy market. Nonlinear Anal. Real World Appl. 12(6), 3103–3113 (2011)

    Article  MathSciNet  Google Scholar 

  26. Mariani, M.C., SenGupta, I., Salas, M.: Solutions to a gradient-dependent integro-differential parabolic problem arising in the pricing of financial options in a Lévy market. J. Math. Anal. Appl. 385(1), 36–48 (2012)

    Article  MathSciNet  Google Scholar 

  27. Merton, R.C.: Option pricing when underlying stock returns are discontinuous. J. Financial Econ. 3, 125–144 (1976)

    Article  Google Scholar 

  28. Mikulevicius, R., Pragarauskas, G.: On the uniqueness of solutions of the martingale problem that is associated with degenerate Lévy operators. Liet. Mat. Rink. 33(4), 455–475 (1993)

    MathSciNet  MATH  Google Scholar 

  29. Mikulevicius, R., Pragarauskas, H.: On the Cauchy problem for integro-differential operators in Hölder classes and the uniqueness of the martingale problem. Potential Anal. 40(4), 539–563 (2014a)

    Article  MathSciNet  Google Scholar 

  30. Mikulevicius, R., Pragarauskas, H.: On the Cauchy problem for integro-differential operators in Sobolev classes and the martingale problem. J. Differ. Equ. 256(4), 1581–1626 (2014b)

    Article  MathSciNet  Google Scholar 

  31. Pham, H.: Optimal stopping of controlled jump diffusion processes: a viscosity solution approach. J. Math. Syst. Estim. Control 8(1), 1–27 (1998)

    MathSciNet  Google Scholar 

  32. Sato, K.: Lévy Processes and Infinitely Divisible Distributions, volume 68 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (1999). (Translated from the 1990 Japanese original, Revised by the author)

    Google Scholar 

  33. SenGupta, I., Mariani, M.C., Amster, P.: Solutions to integro-differential problems arising on pricing options in a Lévy market. Acta Appl. Math. 118, 237–249 (2012)

    Article  MathSciNet  Google Scholar 

  34. SenGupta, I., Wilson, W., Nganje, W.: Barndorff-Nielsen and Shephard model: oil hedging with variance swap and option. Math. Finance Econ. 13(2), 209–226 (2019)

    Article  MathSciNet  Google Scholar 

  35. Soner H.M.: Optimal control of jump-Markov processes and viscosity solutions. In: Stochastic differential systems, stochastic control theory and applications (Minneapolis, Minn., 1986), pp. 501–511, IMA Vol. Math. Appl., 10. Springer, New York (1988)

  36. Stamicar, R., Ševčovič, D., Chadam, J.: The early exercise boundary for the American put near expiry: numerical approximation. Can. Appl. Math. Quart. 7(4), 427–444 (1999)

    MathSciNet  MATH  Google Scholar 

  37. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series, no 30. Princeton University Press, Princeton (1970)

    Google Scholar 

  38. Wang, S.: An interior penalty method for a large-scale finite-dimensional nonlinear double obstacle problem. Appl. Math. Model. 58, 217–228 (2017)

    Article  MathSciNet  Google Scholar 

  39. Wang, S., Yang, X.Q., Teo, K.L.: Power penalty method for a linear complementarity problem arising from American option valuation. J. Opt. Theory Appl. 129(2), 227–254 (2006)

    Article  MathSciNet  Google Scholar 

  40. Zhu, S.-P.: A new analytical approximation formula for the optimal exercise boundary of American put options. Int. J. Theor. Appl. Finance 9(7), 1141–1177 (2006)

    Article  MathSciNet  Google Scholar 

  41. Zvan, R., Forsyth, P., Vetzal, K.: Penalty methods for American options with stochastic volatility. J. Comput. Appl. Math. 91(2), 199–218 (1998)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research was supported by the project CEMAPRE MULTI/00491 financed by FCT/MEC through national funds and the Slovak research Agency Project VEGA 1/0062/18.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Ševčovič.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cruz, J.M.T.S., Ševčovič, D. On solutions of a partial integro-differential equation in Bessel potential spaces with applications in option pricing models. Japan J. Indust. Appl. Math. 37, 697–721 (2020). https://doi.org/10.1007/s13160-020-00414-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-020-00414-2

Keywords

Mathematics Subject Classification

Navigation