Skip to main content
Log in

New horoball packing density lower bound in hyperbolic 5-space

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

We determine the optimal horoball packings of the asymptotic or Koszul-type Coxeter simplex tilings of hyperbolic 5-space, where the symmetries of the packings are derived from Coxeter groups. The packing density \(\varTheta = \frac{5}{7 \zeta (3)} \approx 0.5942196502\ldots \) is optimal and realized in eleven cases in a commensurability class of arithmetic Coxeter tilings. For the optimal packing arrangements, horoballs are centered at each ideal vertex of the tiling, and horoballs of different types are used. The packings constructed give an effective proof for a new lower bound for the packing density in \(\overline{{\mathbb {H}}}^5\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bezdek, K.: Sphere packings revisited. Eur. J. Combin. 27(6), 864–883 (2006)

    Article  MathSciNet  Google Scholar 

  2. Bowen, L., Radin, C.: Optimally dense packings of hyperbolic space. Geom. Dedicata 104, 37–59 (2004)

    Article  MathSciNet  Google Scholar 

  3. Böröczky, K.: Packing of spheres in spaces of constant curvature. Acta Math. Acad. Sci. Hung. 32, 243–261 (1978)

    Article  MathSciNet  Google Scholar 

  4. Böröczky, K., Florian, A.: Über die dichteste Kugelpackung im hyperbolischen Raum. Acta Math. Acad. Sci. Hung. 15, 237–245 (1964)

    Article  Google Scholar 

  5. Fejes Tóth, G., Kuperberg, W.: Packing and covering with convex sets. In: Gruber, P.M., Willis, J.M. (eds.) Handbook of Convex Geometry, pp. 799–860. North-Holland, Amsterdam (1983)

    MATH  Google Scholar 

  6. Fejes Tóth, L.: Regular Figures. Macmillian, New York (1964)

    MATH  Google Scholar 

  7. Fisher, D., Lafont, J.-F., Miller, N., Stover, M.: Finiteness of Maximal Geodesic Submanifolds in Hyperbolic Hybrids. arXiv:1802.04619 [math.GT]

  8. Im Hof, H.-C.: Napier cycles and hyperbolic Coxeter groups. Bull. Soc. Math. Belg. 42, 523–545 (1990)

    MathSciNet  MATH  Google Scholar 

  9. Johnson, N.W., Kellerhals, R., Ratcliffe, J.G., Tschants, S.T.: The size of a hyperbolic coxeter simplex. Transform. Groups 4(4), 329–353 (1999)

    Article  MathSciNet  Google Scholar 

  10. Johnson, N.W., Kellerhals, R., Ratcliffe, J.G., Tschants, S.T.: Commensurability classes of hyperbolic Coxeter groups. Linear Algebra Appl. 345, 119–147 (2002)

    Article  MathSciNet  Google Scholar 

  11. Kellerhals, R.: On the volumes of hyperbolic 5-orthoschemes and the trilogarithm. Comment. Math. Helv. 67, 648–663 (1992)

    Article  MathSciNet  Google Scholar 

  12. Kellerhals, R.: Ball packings in spaces of constant curvature and the simplicial density function. Journal für reine und angewandte Mathematik 494, 189–203 (1998)

    Article  MathSciNet  Google Scholar 

  13. Kozma, R.T., Szirmai, J.: Optimally dense packings for fully asymptotic Coxeter tilings by horoballs of different types. Monatshefte für Mathematik 168(1), 27–47 (2012)

    Article  MathSciNet  Google Scholar 

  14. Kozma, R.T., Szirmai, J.: New lower bound for the optimal ball packing density of hyperbolic 4-space. Discrete Comput. Geom. 53(1), 182–198 (2015). https://doi.org/10.1007/s00454-014-9634-1

    Article  MathSciNet  MATH  Google Scholar 

  15. Marshall, T.H.: Asymptotic volume formulae and hyperbolic ball packing. Ann. Acad. Sci. Fenn. Math. 24, 31–43 (1999)

    MathSciNet  MATH  Google Scholar 

  16. Molnár, E.: The projective interpretation of the eight 3-dimensional homogeneous geometries. Beitr. Algebra Geom. 38(2), 261–288 (1997)

    MathSciNet  MATH  Google Scholar 

  17. Molnár, E., Szirmai, J.: Symmetries in the 8 homogeneous 3-geometries. Symmetry Cult. Sci. 21(1–3), 87–117 (2010)

    MATH  Google Scholar 

  18. Radin, C.: The symmetry of optimally dense packings. In: Prékopa, A., Molnár, E. (eds.) Non-Eucledian Geometries, pp. 197–207. Springer, Berlin (2006)

    Chapter  Google Scholar 

  19. Rogers, C.A.: Packing and Covering, Cambridge Tracts in Mathematics and Mathematical Physics, vol. 54. Cambridge University Press, Cambridge (1964)

    Google Scholar 

  20. Szirmai, J.: The optimal ball and horoball packings of the Coxeter tilings in the hyperbolic 3-space. Beitr. Algebra Geom. 46(2), 545–558 (2005)

    MathSciNet  MATH  Google Scholar 

  21. Szirmai, J.: The optimal ball and horoball packings to the Coxeter honeycombs in the hyperbolic d-space. Beitr. Algebra Geom. 48(1), 35–47 (2007)

    MathSciNet  MATH  Google Scholar 

  22. Szirmai, J.: The densest geodesic ball packing by a type of nil lattices. Beitr. Algebra Geom. 48(2), 383–397 (2007)

    MathSciNet  MATH  Google Scholar 

  23. Szirmai, J.: Horoball packings to the totally asymptotic regular simplex in the hyperbolic n-space. Aequationes mathematicae 85, 471–482 (2013). https://doi.org/10.1007/s00010-012-0158-6

    Article  MathSciNet  MATH  Google Scholar 

  24. Szirmai, J.: Horoball packings and their densities by generalized simplicial density function in the hyperbolic space. Acta Math. Hung. 136(1-2), 39–55 (2012). https://doi.org/10.1007/s10474-012-0205-8

    Article  MathSciNet  MATH  Google Scholar 

  25. Szirmai, J.: Simply transitive geodesic ball packings to \(\mathbf{S^2\times R}\) space groups generated by glide reflections. Annali di Matematica Pura ed Applicata (2013). https://doi.org/10.1007/s10231-013-0324-z

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Thijs Kozma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Volume of \({\widehat{AU}}_5\)

Appendix: Volume of \({\widehat{AU}}_5\)

It was recently shown that the nonarithmetic Coxeter simplex \({\widehat{AU}}_5\) does not arise from a Gromov–Piatetski-Sharpiro construction [7, Ex. 6.10]; its volume was found in [9, p. 338], or as we verify, to a much lesser degree of accuracy on [9, p. 350]. To avoid ambiguity, we numerically find the volume and provide error bounds, refer to [9] for the general procedure.

The second and third order Lobachevsky functions in terms of the dilogarithm and the trilogarithm are respectively

$$\begin{aligned} \varLambda _2(z )&= \tfrac{1}{2} \text {Im} \left( \text {Li}_2\left( e^{2 i z }\right) \right) = - \int _0^{z}\ln |2 \sin (t)|dt,\\ \varLambda _3(z)&=\tfrac{1}{4} \text {Re}\left( \text {Li}_3\left( e^{2 i z }\right) \right) . \end{aligned}$$

The Coxeter diagram of \({\widehat{AU}}_5\) is with apex figure \(\sum (F(t)):\)

figure n

where \( \tan (x_1(t)) = \csc t \sqrt{3 \sin ^2t-1} , ~~~~~ \tan (x_2(t)) = \tan t \sqrt{1-8 \cos (2 t)}. \) Introduce the auxiliary functions

$$\begin{aligned} \omega (t)&= \cos ^{-1}\left( \tfrac{\frac{\cos \left( x_2(t)\right) }{\sqrt{2}}-\cos ^2\left( x_1(t)\right) }{\sqrt{\cos ^2\left( x_1(t)\right) +\frac{1}{2}}}\right) , h(t)=\tfrac{\sqrt{\cos ^2\left( x_1(t)\right) +\cos ^2\left( x_2(t)\right) -\cos ^2(\omega (t))}}{\sin (\omega (t))},\\ \gamma _1(t)&=\cot ^{-1}\left( \sqrt{2} h(t) \cos \left( x_1(t)\right) \right) , \gamma _2(t)=\tan ^{-1}\left( \tfrac{1}{\sqrt{2} \cos \left( x_1(t)\right) }\right) ,\\ \gamma _3(t)&=\cot ^{-1}\left( \tfrac{h(t)}{\sqrt{2} \cos \left( x_1(t)\right) }\right) , \beta _1(t)=\pi - \gamma _1(t)-\omega (t), \beta _2(t)=\omega (t)-\gamma _3(t). \end{aligned}$$

To simplify, notice \(\cos \left( x_1(t)\right) =\frac{\sin (t)}{\sqrt{4 \sin ^2(t)-1}}\) and \(\cos \left( x_2(t)\right) =\frac{\cos (t)}{3-4 \cos ^2(t)}\). Then

$$\begin{aligned} vol_5({\widehat{AU}}_5) = \frac{1}{4}\int _{\pi /4}^{\pi /3} vol_3(F(t))dt + \varLambda _3\left( \tfrac{\pi }{3}\right) -\varLambda _3\left( \tfrac{\pi }{6}\right) + \tfrac{7}{32} \zeta (3) \end{aligned}$$
(23)

where F(t) can be decomposed into four orthoschemes [9, Eq. (3)–(4)],

$$\begin{aligned} vol_3(F(t))&= vol_3\left( R\left( \tfrac{\pi }{4}, x_1(t), \beta _1(t)\right) \right) + vol_3\left( R\left( \tfrac{\pi }{4}, \gamma _2(t), \gamma _3(t) \right) ) \right. \\&\left. \quad + vol_3(R\left( \gamma _1(t), \tfrac{\pi }{2} - \gamma _2(t), x_1(t) \right) ) + vol_3(R\left( \beta _1(t), x_2(t), x_1(t) \right) \right) . \end{aligned}$$

Here the volume of a hyperbolic 3-orthoscheme \(R(\alpha _1, \alpha _2, \alpha _3)\) with \(\sum (R)\) : and \(\tan \theta = \frac{\sqrt{\cos ^2\alpha _2-\sin ^2\alpha _1 \sin ^2\alpha _3}}{\cos \alpha _1 \cos \alpha _3} \in [0, \tfrac{\pi }{2}]\) is given by

$$\begin{aligned} vol_3\left( R(\alpha _1, \alpha _2, \alpha _3)\right)= & {} \frac{1}{4} \left( \varLambda _2(\alpha _1 + \theta ) - \varLambda _2(\alpha _1 - \theta ) + \varLambda _2(\tfrac{\pi }{2} + \alpha _2 - \theta )+ \right. \nonumber \\&+ \left. \varLambda _2(\tfrac{\pi }{2} - \alpha _2 - \theta ) + \varLambda _2(\alpha _3 + \theta ) - \varLambda _2(\alpha _3 - \theta ) \right. \nonumber \\&\left. + 2\varLambda _2(\tfrac{\pi }{2} - \theta ) \right) . \end{aligned}$$
(24)
Table 6 Numerical approximations of the volume of \({\widehat{AU}}_5\)

In the following table we compare the results of [9] with our own numerical approximation of Eq. (23) using Mathematica V. 10.0.2.0 using with integration method Trapezoidal, optional arguments PrecicionGoal set to 12, and MaxRucursion as shown in Table 6. The final row is the default output of Mathematica with no optional arguments, this agrees with that in [9, p. 338] to the precision given.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozma, R.T., Szirmai, J. New horoball packing density lower bound in hyperbolic 5-space. Geom Dedicata 206, 1–25 (2020). https://doi.org/10.1007/s10711-019-00473-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-019-00473-x

Keywords

Mathematics Subject Classification (2000)

Navigation