Skip to main content
Log in

Variation of Storage Proteins in Crimean Populations of Dasypyrum villosum

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

The objective of the investigation was to study variation of storage proteins in two Crimean populations of Dasypyrum villosum from Beregove of the Bakhchisarai region and from the Tauric Chersonese National Reserve (Sevastopol). Sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis of seed storage proteins was performed to analyze diversity of high-molecular-weight glutenin subunits encoded by the Glu-V1 locus, as well as ω-gliadin variants on SDS-electrophoregrams encoded by Gli-V1. In the two Crimean populations of D. villosum, eight alleles at the Glu-V1 locus and four Gli-V1 alleles encoding ω-gliadin were identified. The Crimean populations of D. villosum differed significantly in the frequencies of the alleles a, b, and c at the Glu-V1 locus and both had a high frequency of the null allele (k). The populations showed significant differences in frequencies of ω-gliadin variants on SDS-electrophoregrams encoded by Gli-V1, and gene diversity with respect to this marker was higher in the population of Beregove than that in the Chersonese population. ω-Gliadins on SDS-electrophoregrams are a convenient marker system for analysis of D. villosum populations, which can be employed simultaneously with analysis of high-molecular-weight glutenin subunits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Hajjar, R. and Hodgkin, T., The use of wild relatives in crop improvement: a survey of development over last 20 years, Euphytica, 2007, vol. 156, pp. 1–13. https://doi.org/10.1007/s10681-007-9363-0

    Article  Google Scholar 

  2. Gill, B.S., Friebe, B.R., and White, F.F., Alien introgressions represent a rich source of genes for improvement, Proc. Natl. Acad. Sci. U. S. A., 2011, vol. 108, no. 19, pp. 7657–7658. https://doi.org/10.1073/pnas.1104845108

    Article  PubMed  PubMed Central  Google Scholar 

  3. De Pace, C., Vaccino, P., Cionini, P.G., Pasquini, M., Bizzarri, M., and Qualset, C.O., Dasypyrum, in Wild Crop Relatives: Genomic and Breeding Resources. Cereals, Kole C., Ed., Berlin: Springer-Verlag, 2011, pp. 185–292. https://doi.org/10.1007/978-3-642-14228-4

    Google Scholar 

  4. Shewry, P.R. and Halford, N.G., Cereal seed storage proteins: structures, properties and role in grain utilization, J. Exp. Bot., 2002, vol. 53, no. 370, pp. 947–9. https://doi.org/10.1093/jexbot/53.370.947

    Article  CAS  PubMed  Google Scholar 

  5. Chen, P.D., Qi, L.L., Zhou, B., Zhang, S.Z., and Liu, D.J., Development and molecular cytogenetic analysis of wheat–Haynaldia villosa 6VS/6AL translocation lines specifying resistance to powdery mildew, Theor. Appl. Genet., 1995, vol. 91, pp. 1125–1128. https://doi.org/10.1007/BF00223930

    Article  CAS  PubMed  Google Scholar 

  6. Xing, L., Hu, P., Liu, J., Witek, K., Zhou, S., Xu, J., Zhou, W., Gao, L., Huang, Z., Zhang, R., Wang, X., Chen, P., Wang, H., Jones, J.D.G., Karafiátová, M., Vrána, J., Bartoš, J., Doležel, J., Tian, Y., Wu, Y., and Cao, A., Pm21 from Haynaldia villosa encodes a CC-NBS-LRR protein conferring powdery mildew resistance in wheat, Mol. Plant., 2018, vol. 11, no. 6, pp. 874–878. https://doi.org/10.1016/j.molp.2018.02.013

    Article  CAS  PubMed  Google Scholar 

  7. Yildirim, A., Jones, S.S., Murray, T.D., and Line, R.F., Evaluation of Dasypyrum villosum populations for resistance to cereal eyespot and stripe rust pathogens, Plant Dis., 2000, vol. 84, pp. 40–44. https://doi.org/10.1094/PDIS.2000.84.1.40

    Article  CAS  PubMed  Google Scholar 

  8. Murray, T.D., De La Pena, R.C., Yildirim, A., and Jones, S.S., A new source of resistance to Pseudocercosporella herpotrichoides, cause of eyespot disease of wheat, located on chromosome 4V of Dasypyrum villosum,Plant Breed., 1994, vol. 113, pp. 281–286. https://doi.org/10.1111/j.1439-0523.1994.tb00737.x

    Article  Google Scholar 

  9. Shewry, P.R., Parmar, S., and Pappin, D.J.C., Characterization and genetic control of the prolamins of Haynaldia villosa: relationship to cultivated species of the Triticeae (rye, wheat, and barley), Biochem. Genet., 1987, vol. 25, pp. 309–325. https://doi.org/10.1007/bf00499323

    Article  CAS  PubMed  Google Scholar 

  10. Blanco, A., Resta, P., Simeone, R., Parmar, S., Shewry, P.R., Sabelli, P., and Lafiandra, D., Chromosomal location of seed storage protein genes in the genome of Dasypvrum villosum (L.) Candargy, Theor. Appl. Genet. 1991, vol. 82, pp. 358–362. https://doi.org/10.1007/BF02190623

    Article  CAS  PubMed  Google Scholar 

  11. De Pace, C., Snidaro, D., Ciaffi, M., Vittori, D., Ciofo, A., Cenci, A., Tanzarella, O.A., Qualset, C.O., and Scarascia Mugnozza, G.T., Introgression of Dasypyrum villosum chromatin into common wheat improves grain protein quality, Euphytica, 2001, vol. 117, pp. 67–75. https://doi.rg/10.1023/A:1004095705460

    Article  CAS  Google Scholar 

  12. Vaccino, P., Banfi, R., Corbellini, M., and De Pace, C., Improving the wheat genetic diversity for end-use grain quality by introgression of chromatin from the wheat wild relative Dasypyrum villosum,Crop Sci., 2010, vol. 50, pp. 528–540. https://doi.org/10.2135/cropsci2009.04.0179

    Article  CAS  Google Scholar 

  13. Zhao, W., Qi, L., Gao, X., Zhang, G., Dong, J., Chen, Q., Friebe, B., and Gill, B.S., Development and characterization of two new Triticum aestivum–Dasypyrum villosum Robertsonian translocation lines T1DS 1V#3L and their effect on grain quality, Euphytica, 2010, vol. 175, pp. 343–350. https://doi.org/10.1007/s10681-010-0177-0

    Article  Google Scholar 

  14. Ruiqi, Z., Mingyri, Z., Xiue, W., and Peidu, C., Introduction of chromosome segment carrying the seed storage protein genes from chromosome 1V of Dasypyrum villosum showed positive effect on breadmaking quality of common wheat, Theor. Appl. Genet., 2014, vol. 127, pp. 523–533. https://doi.org/10.1007/s00122-013-2244-0

    Article  CAS  PubMed  Google Scholar 

  15. Zhong, G.Y. and Qualset C.O. Allelic diversity of high molecular-weight glutenin protein subunits in natural populations of Dasypyrum villosum (L.) Candargy, Theor. Appl. Genet., 1993, vol. 86, pp. 851–858. doihttps://doi.org/10.1007/BF00212612

    Article  CAS  PubMed  Google Scholar 

  16. Zhong, G.Y. and Qualset, C.O., Quantitative genetic diversity and conservation strategies for an allogamous annual species, Dasypyrum villosum (L.) Candargy (Poaceae), Theor. Appl. Genet., 1995, vol. 91, pp. 1064–1073. https://doi.org/10.1007/BF00223920

    Article  CAS  PubMed  Google Scholar 

  17. Tsvelev, N.N., Grasses of the USSR, Leningrad: Nauka, 1997.

    Google Scholar 

  18. Laemmli, U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 1970, vol. 227, no. 5259, pp. 680–685. https://doi.org/10.1038/227680a0

    Article  CAS  PubMed  Google Scholar 

  19. Payne, P. and Lawrence, G., Catalogue of alleles for the complex gene loci. Glu-A1, Glu-B1, Glu-D1 which code for high-molecular-weight subunits of glutenin in hexaploid wheat, Cereal Res. Commun., 1983, vol. 11, no. 1, pp. 29–34.

    Google Scholar 

  20. Nei, M., Analysis of gene diversity in subdivided populations, Proc. Natl. Acad. Sci. U. S. A., 1973, vol. 70, pp. 3321–332. https://doi.org/10.1073/pnas.70.12.3321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kozub, N.A., Sozinov, I.A., Kopus’, M.M., Kolyeba, O.P., and Koleyeba, O.Yu., Identification of gliadin blocks on SDS-electrophoregrams using near-isogenic lines for gliadin loci, Tsitol. Genet., 1994, vol. 28, no. 2, pp. 25–30.

    CAS  Google Scholar 

  22. Ribeiro, M., Carvalho, C., Carnide, V., Guedes-Pinto, H., and Igrejas, G., Towards allelic diversity in the storage proteins of old and currently growing and hexaploid wheats in Portugal, Genet. Resour. Crop Evol., 2011, vol. 58, pp. 1051–1073. https://doi.org/10.1007/s10722-010-9642-9

    Article  CAS  Google Scholar 

  23. Nieto-Taladriz, M., Branlard, G., and Dardevet, M., Polymorphism of omega-gliadins in wheat as revealed by the two-step APAGE/SDS-PAGE technique, Theor. Appl. Genet., 1994, vol. 87, pp. 1001–1005. https://doi.org/10.1007/BF00225795

    Article  CAS  PubMed  Google Scholar 

  24. Igrejas, G., Guedes-Pinto, H., Carnide, V., and Branland, G., Seed storage protein diversity in triticale varieties grown in Portugal, Plant Breed., 1999, vol. 118, pp. 303–306. https://doi.org/10.1046/j.1439-0523.1999.00379.x

    Article  CAS  Google Scholar 

Download references

Funding

This research was not funded by a specific project grant from state, commercial or nonprofit funding institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. O. Kozub.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozub, N.O., Sozinova, O.I. & Blume, Y.B. Variation of Storage Proteins in Crimean Populations of Dasypyrum villosum. Cytol. Genet. 54, 91–95 (2020). https://doi.org/10.3103/S0095452720020097

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452720020097

Keywords:

Navigation