Skip to main content
Log in

Molecular and Genetic Aspects of Helicobacter pylori Interaction with Cells of Gastric Mucosa

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

This paper considers current views on the classical determinants of Helicobacter pylori virulence, pathogenetic effects of phosphorylation, and the process of CagA translocation into gastric mucosa (GM) cells and characterizes surface membrane receptors of VacA binding to epithelial cells of the gastric mucosa. The necessity of genetic typing of Helicobacter pylori to determine the potential virulence of a microorganism in order to predict the course of H. pylori-associated diseases and to select targeted therapy is substantiated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Kurinna, Y.G. Report on the Kyoto International Consensus on Gastritis Associated with Helicobacter pylori,Mod. Gastroenterol., 2016, vol. 86, no. 1, pp. 36–53.

    Google Scholar 

  2. Lind, J., Backert, S., and Hoffmann, R., Systematic analysis of phosphotyrosine antibodies recognizing single phosphorylated EPIYA-motifs in CagA of East Asian-type Helicobacter pylori strains, BMC Microbiol., 2016, vol. 16, no. 1, https://doi.org/10.1186/s12866-016-0820-6

  3. Pachathundikandi, S. K., Lind, J., and Tegtmeyer, N., Interplay of the gastric pathogen Helicobacter pylori with Toll-like receptors, BioMed. Res. Int., 2015, pp. 1–12. https://doi.org/10.1155/2015/192420

  4. Salama, N.R., Hartung, M.L., and Müller, A., Life in the human stomach: persistence strategies of the bacterial pathogen Helicobacter pylori,Nat. Rev. Microbiol., 2013, vol. 11, no. 6, pp. 385–399. https://doi.org/10.1038/nrmicro3016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Linz, B., Balloux, F., and Moodley, Y., An African origin for the intimate association between humans and Helicobacter pylori,Nature, 2007, vol. 445, no. 7130, pp. 915–918. https://doi.org/10.1038/nature05562

    Article  PubMed  PubMed Central  Google Scholar 

  6. Backert, S. and Tegtmeyer, N., Type IV secretion and signal transduction of Helicobacter pylori CagA through Interactions with host cell receptors, Toxins, 2017, vol. 9, no. 4, p. 115. https://doi.org/10.3390/toxins9040115

    Article  CAS  PubMed Central  Google Scholar 

  7. Maixner, F., Krause-Kyora, B., and Turaev, D., The 5300-year-old Helicobacter pylori genome of the Iceman, Science, 2016, vol. 351, no 6269, pp. 162–165. https://doi.org/10.1126/science.aad2545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Amieva, M., and Peek, R.M., Pathobiology of Helicobacter pylori-induced gastric cancer, Gastroenterology, 2016, vol. 150, no. 1, pp. 64–78. https://doi.org/10.1053/j.gastro.2015.09.004

    Article  CAS  PubMed  Google Scholar 

  9. Moodley, Y., Linz, B., and Bond, R.P., Age of the association between Helicobacter pylori and man, PLoS Pathogens, 2012, vol. 8, no. 5. https://doi.org/10.1371/journal.ppat.1002693

  10. Kodaman, N., Sobota, R.S. and Mera, R., Disrupted human–pathogen co-evolution: a model for disease, Front. Genetics, 2014, no. 5. https://doi.org/10.3389/fgene.2014.00290

  11. Yamaoka, Y., Graham, D.Y., Helicobacter pylori virulence and cancer pathogenesis, Future Oncol., 2014, vol. 10, no. 8, pp. 1487–1500. https://doi.org/10.2217/fon

  12. Westmeier, D., Posselt, G., and Hahlbrock, A., Nanoparticle binding attenuates the pathobiology of gastric cancer-associated Helicobacter pylori,Nanoscale, 2018, 10, no. 3, pp. 1453–1463. https://doi.org/10.1039/c7nr06573f

    Article  CAS  PubMed  Google Scholar 

  13. Backert, S., Clyne, M., and Tegtmeyer, N., Molecular mechanisms of gastric epithelial cell adhesion and injection of CagA by Helicobacter pylori,Cell Commun. Signal., 2011, 9, no. 1, p. 28. https://doi.org/10.1186/1478-811X-9-28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Amieva, M.R. and El-Omar, E.M., Host–bacterial interactions in Helicobacter pylori infection, Gastroenterology, 2008, 134, no 1, pp. 306–323. https://doi.org/10.1053/j.gastro.2007.11.009

    Article  CAS  PubMed  Google Scholar 

  15. Atherton, J.C. and Blaser, M.J., Coadaptation of Helicobacter pylori and humans: ancient history, modern implications, J. Clin. Invest., 2009, 119, no. 9, pp. 2475–2487. https://doi.org/10.1172/JCI38605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Polk, D.B. and Peek, R.M., Helicobacter pylori: gastric cancer and beyond, Nat. Rev. Cancer, 2010, vol. 10, no. 6, pp. 403–414. https://doi.org/10.1038/nrc2857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Schreiber, S., Konradt, M.C., and Grol, O., The spatial orientation of Helicobacter pylori in the gastric mucus, Proc. Natl. Acad. Sci. U. S. A., 2004, 101, no. 14, pp. 5024–5029. https://doi.org/10.1073/pnas.0308386101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Schreiber, S., Bucker, R., and Groll, C., Rapid loss of motility of Helicobacter pylori in the gastric lumen in vivo, Infect. Immun., 2005, vol. 73, no. 3, pp. 1584– 1589. https://doi.org/10.1128/IAI.73.3.1584-1589.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Backert, S. and Tegtmeyer, N., The versatility of the Helicobacter pylori vacuolating cytotoxin VacA in signal transduction and molecular crosstalk, Toxins, 2010, vol. 2, no. 1, pp. 69–92. https://doi.org/10.3390/toxins2010069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hiroko, N. and Masanori, H., Sequence polymorphism and intrinsic structural disorder as related to pathobiological performance of the Helicobacter pylori CagA oncoprotein, Toxins, 2017, vol. 9, no. 4, pp. 136. https://doi.org/10.3390/toxins9040136

    Article  CAS  Google Scholar 

  21. Kostiuk, O.V., Pathogenicity factors of H. pylori: genotypic bases and phenotypic manifestations, Prevent. Med., 2012, vol. 2, no. 18, pp. 65–70.

    Google Scholar 

  22. Backert, S. and Blaser, M.J., The role of CagA in the gastric biology of Helicobacter pylori, Am. Assoc. Cancer Res., 2016, vol. 76, no. 14, pp. 4028–4031. https://doi.org/10.1158/0008-5472.CAN-16-1680

    Article  CAS  Google Scholar 

  23. Hayashi, T., Senda, M., Morohashi, H., Higashi, H., Horio, M., Kashiba, Y., Nagase, L., Sasaya, D., Shimizu, T., and Venugopalan, N., Tertiary structure–function analysis reveals the pathogenic signaling potentiation mechanism of Helicobacter pylori oncogenic effector CagA, Cell Host Microbe, 2012, no. 12, pp. 20–33.https://doi.org/10.1016/j.chom.2012.05.010

  24. Kostyuk, O.V., Factors of pathogenicity of H. pylori: genotypical bases and phenotypic manifestations, Profilakt. Med.: Sci. Pract. J., 2012, no. 2, pp. 65–70.

  25. Shariq, M., Kumar, N., and Kumari, R., Biochemical Analysis of CagE: a VirB4 homologue of Helicobacter pylori Cag-T4SS, PLoS One, 2015, vol. 11, no. 10. https://doi.org/10.1371/journal.pone.0142606

  26. Zhang, J., Fan, F., and Zhao, Y., Crystal structure of the type IV secretion system component CagX from Helicobacter pylori,Acta Crystallogr. F Struct. Biol. Commun., 2017, vol. 73, no. 3, pp. 167–173. https://doi.org/10.1107/S2053230X17001376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Merino, E., Flores-Encarnaciyn, M., and Aguilar-Gutierrez, G.R., Functional interaction and structural characteristics of unique components of Helicobacter pylori T4SS, FEBS J., 2017, vol. 284, no. 21, pp. 3540–3549. https://doi.org/10.1111/febs.l4092

    Article  CAS  PubMed  Google Scholar 

  28. Sause, W. E., Keilberg, D., Aboulhouda, S., and Ottemann, K.M., The Helicobacter pylori autotransporter ImaA tempers the bacterium’s interaction with a5pi integrin, Infect. Immun., 2017, vol. 85, no. l. https://doi.org/10.1128/IAI.00450-16

  29. Ko, S.H., Rho, D.J., Jeon, J.L., Kim, Y.J., Woo, H.A., Kim, N., and Kim, J.M., Crude preparations of Helicobacter pylori outer membrane vesicles induce upregulation of heme oxygenase-1 via activating Akt-Nrf2 and mTOR-IкB Kinase-NF-кB pathways in dendritic cells, Infect. Immun., 2016, vol. 84, no. 8, pp. 2162–2174. https://doi.org/10.1128/IAI.00190-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Park, N.H., Song, M.S., Shin, S.Y., Jeong, J.-H., and Lee, H.Y., The effects of medication adherence and health literacy on health-related quality of life in older people with hypertension, Int. J. Older People Nurs., 2018, vol. 13, no. 3. https://doi.org/10.1111/opn.l2196

  31. Jones, K.R., Whitmire, J.M., and Merrell, D.S., A tale of two toxins: Helicobacter pylori CagA and VacA modulate host pathways that impact disease, Front. Microbiol., 2010, vol. 1. https://doi.org/10.3389/fmicb.2010.00115

  32. Nishikawa, H., Hatakeyama, M. Sequence polymorphism and intrinsic structural disorder as related to pathobiological performance of the Helicobacter pylori CagA oncoprotein, Toxins, 2017, vol. 9, no. 4, p. 136. https://doi.org/10.3390/toxins9040136

    Article  CAS  PubMed Central  Google Scholar 

  33. Palcev, M.A., Kaktursky, L.V., and Zayratyants, O.V., Pathological Anatomy: National Leadership, Moscow: GEOTAR-MEDIA, 2013.

    Google Scholar 

  34. Chomvarin, C., Phusri, K., Sawadpanich, K., Mairiang, P., Namwat, W., Wongkham, C., and Hahnvajanawong, C., Prevalence of cagA EPГYA motifs in Helicobacter pylori among dyspeptic patients in Northeast Thailand, Southeast Asian J. Trop. Med. Public Health, 2012, vol. 42, no. 1, pp. 105–115.

    Google Scholar 

  35. Hatakeyama, M., Helicobacter pylori CagA and gastric cancer: a paradigm for hit-and-run carcinogenesis, Cell Host Microbe, 2014, vol. 15, no. 3, pp. 306–316.https://doi.org/10.1016/j.chom.2014.02.008

  36. Buzas, G.M., Helicobacter pylori: A Worldwide Perspective 2014, Budapest: Bentham Science Publishers, 2014.

    Google Scholar 

  37. Wong, S.H.M., Fang, C.M., and Chuah, L.-H., E-cadherin: Its dysregulation in carcinogenesis and clinical implications, Crit. Rev. Oncol./Hematol., 2018, 121, pp. 11–22. https://doi.org/10.1016/j.critre-vonc.2017.11.010

    Article  Google Scholar 

  38. Tegtmeyer, N. and Backert, S., Molecular Pathogenesis and Signal Transduction by Helicobacter pylori, Switzerland: Springer, 2017.

    Book  Google Scholar 

  39. Wroblewski, L.E. and Peek, R.M., Targeted disruption of the epithelial-barrier by Helicobacter pylori,Cell Commun. Signal., 2011, vol. 9. https://doi.org/10.1186/1478-811X-9-29

  40. Zhang, Y., Xia, M., and Jin, K., Function of the c-Met receptor tyrosine kinase in carcinogenesis and associated therapeutic opportunities, Mol. Cancer, 2018, vol. 17, no. 1. https://doi.org/10.1186/s12943-018-0796-y

  41. Steffen, B. and Yoshio, Y. Helicobacter pylori Research: From Bench to Bedside, Japan: Springer, 2016.

    Google Scholar 

  42. Li, N., Tang, B., and Jia, Y., Helicobacter pylori CagA protein negatively regulates autophagy and promotes inflammatory response via c-Met-PI3K/Akt-mTOR signaling pathway, Front. Cell. Infect. Microbiol., 2017, no. 7. https://doi.org/10.3389/fcimb.2017.00417

  43. Churin, Y., Al-Ghoul, L., Kepp, O., Meyer, T.F., Birchmeier, W., and Naumann, M., Helicobacter pylori CagA protein targets the c-Met receptor and enhances the mitogenic response, J. Cell Biol., 2003, vol. 161, no. 2, pp. 249–255. https://doi.org/10.1083/jcb.200208039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Huang, X., Wang, C., Sun, J., Luo, J., You, J., Liao, L., and Li, M., Clinical value of CagA, c-Met, PI3K and Beclin-1 expressed in gastric cancer and their association with prognosis, Oncol Lett., 2018, vol. 15, no. 1, pp. 947–955. https://doi.org/10.3892/ol.2017.7394

    Article  CAS  PubMed  Google Scholar 

  45. Hiroko, N. and Masanori, H., Sequence polymorphism and intrinsic structural disorder as related to pathobiological performance of the Helicobacter pylori CagA oncoprotein, Toxins, 2017, vol. 9, no. 4, p. 136. https://doi.org/10.3390/toxins9040136

    Article  CAS  Google Scholar 

  46. Yamahashi, Y., Saito, Y., Murata-Kamiya, N., and Hatakeyama, M., Polarity-regulating kinase partitioning-defective 1b (PAR1b) phosphorylates guanine nucleotide exchange factor H1 (GEF-H1) to regulate RhoA-dependent actin cytoskeletal reorganization, J. Biol. Chem., 2011, vol. 286, no. 52, pp. 44 576–44 584. https://doi.org/10.1074/jbc.M111.267021

    Article  CAS  Google Scholar 

  47. Nishikawa, H., Hayashi, T., and Arisaka, F., Impact of structural polymorphism for the Helicobacter pylori CagA oncoprotein on binding to polarity-regulating kinase PARlb, Sci. Rep., 2016, vol. 6, no. 1. https://doi.org/10.1038/srep30031

  48. Fahimi, R, Tohidkia, M.R., and Fouladi, M., Pleiotropic cytotoxicity of VacA toxin in host cells and its impact on immunotherapy, BioImpacts, 2017, vol. 7, no. 1, pp. 59–71. https://doi.org/10.15171/bi.2017.08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Foegeding, N., Caston, R, and McClain, M., An overview of Helicobacter pylori VacA toxin biology, Toxins, 2016, vol. 8, no. 6, p. 173. https://doi.org/10.3390/toxins8060173

    Article  CAS  PubMed Central  Google Scholar 

  50. Chauhan, N., Tay, A.C.Y., Marshall, B.J., and Jain, U., Helicobacter pylori VacA, a distinct toxin exerts diverse functionalities in numerous cells: an overview, Helicobacter, 2018, no. 16. https://doi.org/10.1111/hel.12544

  51. McClain, M.S., Beckett, A.C., and Cover, T.L. Helicobacter pylori vacuolating toxin and gastric cancer, Toxins, 2017, vol. 12, no. 10. https://doi.org/10.3390/toxins91003l6

  52. Ivie, S.E, McClain, M.S., and Algood, H., Analysis of a p-helical region in the p55 domain of Helicobacter pylori vacuolating toxin, BMC Microbiol., 2010, vol. 10, no. 1, p. 60. https://doi.org/10.1186/1471-2180-10-60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Palframan, S. L., Kwok, T., and Gabriel, K., Vacuolating cytotoxin A (VacA), a key toxin for Helicobacter pylori pathogenesis, Front. Cell. Inf. Microbiol., 2012, vol. 2, p. 92. https://doi.org/10.3389/fcimb.2012.00092

    Article  CAS  Google Scholar 

  54. Foo, H., Culvenor, J.G, and Ferrero, R.L., Both the p33 and p55 subunits of the Helicobacter pylori VacA toxin are targeted to mammalian mitochondria, J. Mol. Biol., 2010, vol. 401, no. 5, pp. 792–798.https://doi.org/10.1016/j.jmb.2010.06.065

  55. Yahiro, K., Hirayama, T., and Moss, J., New insights into VacA intoxication mediated through its cell surface receptors, Toxins, 2016, vol. 8, no. 5, p. 152. https://doi.org/10.3390/toxins8050152

    Article  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. S. Sukhan, S. V. Vernygorodskyi, N. V. Haidukov or H. P. Ludkevich.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by K. Lazarev

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sukhan, D.S., Vernygorodskyi, S.V., Haidukov, N.V. et al. Molecular and Genetic Aspects of Helicobacter pylori Interaction with Cells of Gastric Mucosa. Cytol. Genet. 54, 147–153 (2020). https://doi.org/10.3103/S0095452720020139

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452720020139

Navigation