Skip to main content
Log in

Genetic Modifiers of the Spinal Muscular Atrophy Phenotype

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

Proximal spinal muscular atrophy (SMA) is an autosomal recessive neurodegenerative disease caused by homozygous deletion in the seventh exon of the SMN1 gene. The aim of this work is to analyze the association of the allelic polymorphism of telomeric genes SMN1 and NAIP and the centromeric gene SMN2 of the 5q13 region with the clinical phenotype of SMA. It was shown that the homozygous genotype, which contains a telomeric deletion, covering both SMN1 and NAIP, is significantly more often observed in patients with the most severe type of SMA. Three or more copies of SMN2 are associated with a milder phenotype; the number of SMN2 copies affects the SMA phenotype more heavily than the length of the telomeric deletion. It was shown that one SMN2 copy is significantly more frequent than three or more copies of this gene in SMA-patients with homozygous deletion of SMN1 and NAIP. This fact may indicate the presence of a large deletion of all the three studied genes in SMA genotypes associated with the most severe type of SMA. It is noted that congenital SMA (type 0) is significantly less common in female patients, which may indicate the presence of SMA modifier genes on the X-chromosome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Ogino, S. and Wilson, R., Spinal muscular atrophy: molecular genetics and diagnostics, Expert.Rev., 2004, vol. 4, no. 1, pp. 15–29. https://doi.org/10.1586/14737159.4.1.15

    Article  CAS  Google Scholar 

  2. Mesfin, A., Sponseller, P.D., and Leet, A.I., Spinal muscular atrophy: manifestations and management, J. Am. Acad. Orthop. Surg., 2012, vol. 20, no. 6, pp. 393–401. https://doi.org/10.5435/JAAOS-20-06-393

    Article  PubMed  Google Scholar 

  3. Grotto, S., Cuisset, J.M., Marret, S., Drunat, S., Faure, P., Audebert-Bellanger, S., Desguerre, I., Flurin, V., Grebille, A.G., Guerrot, A.M., Journel, H., Morin, G., Plessis, G., Renolleau, S., Roume, J., Simon-Bouy, B., Touraine, R., Willems, M., Frébourg, T., Verspyck, E., and Saugier-Veber, P., Type 0 spinal muscular atrophy: further delineation of prenatal and postnatal features in 16 patients, J. Neuromuscul. Dis., 2016, vol. 3, no. 4, pp. 487–95. https://doi.org/10.3233/JND-160177

    Article  PubMed  Google Scholar 

  4. Butchbach, M.E., Copy number variations in the survival motor neuron genes: implications for spinal muscular atrophy and other neurodegenerative diseases, Front. Mol. Biosci., 2016, vol. 10, no. 3, pp. 7. https://doi.org/10.3389/fmolb.2016.00007

    Article  CAS  Google Scholar 

  5. Jedrzejowska, M., Milewski, M., and Zimowski, J., Phenotype modifiers of spinal muscular atrophy: the number of SMN2 gene copies, deletion in the NAIP gene and probably gender influence the course of the disease, Acta Biochim. Pol., 2009, vol. 56, no. 1, pp. 103–111.

    Article  CAS  PubMed  Google Scholar 

  6. Groen, E.J.N., Perenthaler, E., Courtney, N.L., Jordan, C.Y., Shorrock, H.K., van der Hoorn, D., Huang, Y.-T., Murray, L.M., Viero, G., and Gillingwater, T.H., Temporal and tissue-specific variability of SMN protein levels in mouse models of spinal muscular atrophy, Hum. Mol. Genet., 2018, vol. 27, no. 16, pp. 2851–2862. https://doi.org/10.1093/hmg/ddy195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Alrafiah, A., Alghanmi, M., Almashhadi, S., Aqeel, A., and Awaji, A., The expression of SMN1, MART3, GLE1 and FUS genes in spinal muscular atrophy, Folia Histochem. Cytobiol., 2018, vol. 56, no. 4, pp. 215–221. https://doi.org/10.5603/FHC.a2018.0022

    Article  CAS  PubMed  Google Scholar 

  8. Aquilina, B. and Cauchi, R.J., Genetic screen identifies a requirement for SMN in mRNA localisation within the Drosophila oocyte, BMC Res. Notes, 2018, vol. 11, no. 1, p. 378. https://doi.org/10.1186/s13104-018-3496-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Beattie, C.E. and Kolb, S.J., Spinal muscular atrophy: selective motor neuron loss and global defect in the assembly of ribonucleoproteins, Brain. Res., 2018, vol. 1693 (Pt. A), pp. 92–97. https://doi.org/10.1016/j.brainres.2018.02.022

  10. Mattis, V.B., Butchbach, M.E., and Lorson, C.L., Detection of human survival motor neuron (SMN) protein in mice containing the SMN2 transgene: applicability to preclinical therapy development for spinal muscular atrophy, J. Neurosci. Methods, 2008, vol. 175, no. 1, pp. 36–43. https://doi.org/10.1016/j.jneumeth.2008.07.024

    Article  PubMed  PubMed Central  Google Scholar 

  11. Butchbach, M.E., Rose, F.F., Jr., Rhoades, S., Marston, J., McCrone, J.T., Sinnott, R., and Lorson, C.L., Effect of diet on the survival and phenotype of a mouse model for spinal muscular atrophy, Biochem. Biophys. Res. Commun., 2010, vol. 391, no. 1, pp. 835–40. https://doi.org/10.1016/j.bbrc.2009.11.148

    Article  CAS  PubMed  Google Scholar 

  12. Rouault, F., Christie-Brown, V., and Broekgaarden, R., Disease impact on general well-being and therapeutic expectations of European type II and type III spinal muscular atrophy patients, Neuromuscul. Disord., 2017, vol. 27, no. 5, pp. 428–438. https://doi.org/10.1016/j.nmd.2017.01.018

    Article  PubMed  Google Scholar 

  13. Gidaro, T. and Servais, L., Nusinersen treatment of spinal muscular atrophy: current knowledge and existing gaps, Dev. Med. Child. Neurol., 2019, vol. 61, no. 1, pp. 19–24. https://doi.org/10.1111/dmcn.14027

    Article  PubMed  Google Scholar 

  14. Maniatis, T., Fritsch, E.E., and Sambrook, J., Molecular Cloning: A Laboratory Manual, 4th ed., Cold Spring Harbor Laboratory, 2012.

    Google Scholar 

  15. Stabley, D.L., Harris, A.W., Holbrook, J., Chubbs, N.J., Lozo, K.W., Crawford, T.O., Swoboda, K.J., Funanage, V.L., Wang, W., Mackenzie, W., Scavina, M., Sol-Church, K., and Matthew, E.R., Butchbach SMN1 and SMN2 copy numbers in cell lines derived from patients with spinal muscular atrophy as measured by array digital PCR, Mol. Genet. Genom. Med., 2015, vol. 3, no. 4, pp. 248–257.https://doi.org/10.1002/mgg3.141

    Article  CAS  Google Scholar 

  16. Feldkötter, M., Schwarzer, V., Wirth, R., Wienker, T.F., and Wirth, B., Quantitative analyses of SMN1 and SMN2 based on real-time LightCycler PCR: fast and highly reliable carrier testing and prediction of severity of spinal muscular atrophy, Am. J. Hum. Genet., 2002, vol. 70, pp. 358–368.https://doi.org/10.1086/338627

    Article  PubMed  Google Scholar 

  17. Anhuf, D., Eggermann, T., Rudnik-Shöneborn, S., and Zerres, K., Determination of SMN1 and SMN2 copy number using TaqMan technology, Hum. Mutat., 2003, vol. 22, pp. 74–78. https://doi.org/10.1002/humu.10221

    Article  CAS  PubMed  Google Scholar 

  18. Soloviov, O.O., Livshits, G.B., Podlesnaya, S.S., and Livshits, L.A., Implementation of the quantitative Real-Time PCR for the molecular-genetic diagnostics of spinal muscular atrophy, Biopolym. Cell, 2010, vol. 26, no. 1, pp. 51–55. https://doi.org/10.7124/bc.000144

    Article  CAS  Google Scholar 

  19. Solov’ev, A.A., Grishchenko, N.V., and Livshits, L.A., Spinal muscular atrophy carrier frequency in Ukraine, Genetika, 2013, vol. 49, no. 9, pp. 1126–1133. https://doi.org/10.1134/S1022795413080140

    Article  CAS  PubMed  Google Scholar 

  20. Boratyn, G.M., Camacho, C., and Cooper, P.S., BLAST: a more efficient report with usability improvements, Nucleic Acids Res., 2013, vol. 41, pp. W29–W33. https://doi.org/10.1093/nar/gkt282

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wangkumhang, P. and Chaichoompu, K., WASP: a Web-based Allele-Specific PCR assay designing tool for detecting SNPs and mutations, BMC Genomics, 2007, vol. 14, no. 8, pp. 275. https://doi.org/10.1186/1471-2164-8-275

    Article  CAS  Google Scholar 

  22. Casper, J. and Zweig, A.S., The UCSC Genome Browser database: 2018 update, Nucleic Acids Res., 2018, vol. 46 (database issue), pp. D762–D769. https://doi.org/10.1093/nar/gkx1020

  23. Livak, K.J. and Schmittgen, T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2 CT method, Methods, 2001, vol. 25, pp. 402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  24. Cusco, I. and Barcelo, M., Characterisation of SMN hybrid genes in Spanish SMA patients: de novo, homozygous and compound heterozygous cases, Hum. Genet., 2001, vol. 108, pp. 222–229. https://doi.org/10.1007/s004390000452

    Article  CAS  PubMed  Google Scholar 

  25. Ping, F. and Liang, L., Molecular characterization and copy number of SMN1, SMN2 and NAIP in Chinese patients with spinal muscular atrophy ànd unrelated healthy controls, BMC Musculoskeletal Disord., 2015, vol. 16, pp. 11–15. https://doi.org/10.1186/s12891-015-0457-x

    Article  CAS  Google Scholar 

  26. Crawford, T.O., Paushkin, S.V., and Kobayashi, D.T., Evaluation of SMN protein, transcript, and copy number in the biomarkers for spinal muscular atrophy (BforSMA) clinical study, PLoS One, 2012, vol. 7, no. 4. e33 572. https://doi.org/10.1371/journal.pone.0033572

    Article  CAS  Google Scholar 

  27. Ogino, S., Gao, S., Leonard, D.G., Paessler, M., and Wilson, R.B., Inverse correlation between SMN1 and SMN2 copy numbers: evidence for gene conversion from SMN2 to SMN1, Eur. J. Hum. Genet., 2003, vol. 11, no. 3, pp. 275–281. https://doi.org/10.1038/sj.ejhg.5200957

    Article  CAS  PubMed  Google Scholar 

  28. Chen, T.H. and Tzeng, C.C., Identification of bidirectional gene conversion between SMN1 and SMN2 by simultaneous analysis of SMN dosage and hybrid genes in a Chinese population, J. Neurol. Sci., 2011, vol. 308, no. 1–2, pp. 83–89. https://doi.org/10.1016/j.jns.2011.06.002

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank the Kharkiv Charity Foundation Children with Spinal Muscular Atrophy headed by V.N. Matyushenko for many years of comprehensive assistance in the research of this disease and the popularization of knowledge about SMA among the population of Ukraine. We also thank the doctors of the medical-genetic centers of Ukraine for collecting and analyzing clinical data of patients. We thank the staff of the Human Genomics Department of the IMBG NAS of Ukraine, primarily A.Yu. Ekshiyan, A.B. Livshits, A.A. Solov’ev, and S.S. Podlesnaya, who actively participated in the formation of the collection of DNA samples from patients with SMA and in the genotyping of patients by SMN1 and NAIP in the period of 1995—2016.

Funding

This work was carried out in the framework of the budget topics of the IMGB NAS of Ukraine 2011–2015 (topic code 2.2.4.13, state registration number 0105U005341) and 2016–2020 (topic code 2.2.4.13, state registration number 0115U003747).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Hryshchenko.

Ethics declarations

Conflict of interest. The authors declare that they have no conflict of interest.

Statement of compliance with standards of research involving humans as subjects. All procedures carried out in the studies involving people were consistent with international and national standards, the Helsinki Declaration of 1964, and its later amendments, and approved by the Bioethics Commission of the IMBG NAS of Ukraine.

Additional information

Translated by K. Lazarev

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hryshchenko, N.V., Yurchenko, A.A., Karaman, H.S. et al. Genetic Modifiers of the Spinal Muscular Atrophy Phenotype. Cytol. Genet. 54, 130–136 (2020). https://doi.org/10.3103/S0095452720020073

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452720020073

Navigation