Skip to main content
Log in

Spatiotemporal Analysis of Wildfires in the Forest Tundra of Western Siberia

  • Published:
Contemporary Problems of Ecology Aims and scope

Abstract—

The climate change that has taken place in recent decades has significantly increased the threat of the occurrence and distribution of wildfires in northwestern Siberia. However, little is known about the spatial and temporal patterns of fires and their relationship with climate and vegetation in this area. As a result of processing Landsat satellite images for 1985–2017, it was determined that 10.5% of the Western Siberia forest tundra was exposed to fires. The maximum relative area of burned forests (23%) was found in larch and spruce–larch lichen woodlands. One geobotanical indicator of increased fire hazard is the dominance of synusiae of epigeic lichens in the vegetation cover. It is shown that most of the severely burned areas were distributed in the central part of the forest tundra within the largest gas fields. Our results have shown a positive significant correlation between square of areas burned and summer temperature regime (average and maximum summer temperatures) and a negative correlation between burned areas and the amount of summer precipitation. A dendrochronological analysis showed that the frequency of fires varied from 15 to 60 years (an average of about 30 years).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Adaev, V.N., Smoke over the taiga and tundra: fire in the culture of the northern peoples of Western Siberia as a tool for environment transformation, Vestn. Arkheol., Antropol. Etnogr., 2018, no. 2 (41), pp. 138–147.

  2. Allen, J.L. and Sorbel, B., Assessing the differenced Normalized Burn Ratio’s ability to map burn severity in the boreal forest and tundra ecosystems of Alaska’s national parks, Int. J. Wildland Fire, 2008, vol. 17, pp. 463–475.

    Article  Google Scholar 

  3. Aref’ev, S.P., Assessment of the stability of the Siberian stone pine forests in the Western Siberian plain, Russ. J. Ecol., 1997, vol. 28, no. 3, pp. 149–157.

    Google Scholar 

  4. Atlas Yamalo-Nenetskogo avtonomnogo okruga (Atlas of Yamal-Nenets Autonomous Okrug), Omsk: Omsk. Kartogr. Fabrika, 2004.

  5. Bartalev, S.A., Egorov, V.A., Efremov, V.Yu., Lupyan, E.A., Stytsenko, F.V., and Flitman, E.V., Evaluation of fire area based on Modis and Landsat-TM/ETM satellite data integration with different spatial resolution, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosm., 2012, vol. 9, no. 2, pp. 9–26.

    Google Scholar 

  6. Bartalev, S.A., Stytsenko, F.V., Khvostikov, S.A., and Lupyan, E.A., Monitoring and forecasting of pyrogenic decay of forests based on satellite observation data, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosm., 2017, vol. 14, no. 6, pp. 176–193.

    Article  Google Scholar 

  7. Bazilevich, N.I., Biologicheskaya produktivnost’ ekosistem severnoi Evrazii (Biological Productivity of Ecosystems of Northern Eurasia), Moscow: Nauka, 1993.

  8. Bondur, V.G., Satellite monitoring of wildfires during the anomalous heat wave of 2010 in Russia, Izv., Atmos. Ocean. Phys., 2011, vol. 47, no. 9, pp. 1039–1048.

    Article  Google Scholar 

  9. Bret-Harte, M.S., Mack, M.C., Shaver, G.R., Hueb-ner, D.C., Johnston, M., Mojica, C.A., Pizano, C., and Reiskind, J.A., The response of Arctic vegetation and soils following an unusually severe tundra fire, Philos. Trans. R. Soc., B, 2013, vol. 368, p. 20120490. https://doi.org/10.1098/rstb.2012.0490

  10. Chambers, S.D., Beringer, J., Randerson, J.T., and Chapin, F.S., Fire effects on net radiation and energy partitioning: contrasting responses of tundra and boreal forest ecosystems, J. Geophys. Res.: Atmos., 2005, vol. 110, no. 9.

  11. Chang, Y., Zhu, Z., Fen, Y., Li, Y., Bu, R., and Hu, Y., The spatial variation in forest burn severity in Heilongjiang Province, China, Nat. Hazards, 2016, vol. 81, pp. 981–1001.

    Article  Google Scholar 

  12. Drozdov, D.S., Ukraintseva, N.G., Tsarev, A.M., and Chekrygina, S.N., Dynamics of temperature field of permafrost minerals and state of geosystems in Urengoi field over last 35 years (1974–2008), Kriosfera Zemli, 2010, vol. 14, no. 1, pp. 22–31.

    Google Scholar 

  13. García, M.J.L. and Caselles, V., Mapping burns and natural reforestation using Thematic Mapper data, Geocarto Int., 1991, vol. 6, no. 1, pp. 31–37.

    Article  Google Scholar 

  14. Godwin, D.R. and Kobziar, L.N., Fire comparison of burn severities of consecutive large-scale fires in Florida sand pine scrub using satellite imagery analysis, Fire Ecol., 2011, vol. 7, no. 2, pp. 99-113.

    Article  Google Scholar 

  15. Howard, S.M. and Lacasse, J.M., An evaluation of gap-filled Landsat SLC-Off imagery for wildland fire burn severity mapping, Photogramm. Eng. Remote Sens., 2004, vol. 70, pp. 877–880.

    Google Scholar 

  16. Il’ina, I.S., Lapshina, E.I., Lavrenko, N.N., Mel’tser, L.I., Romanova, E.A., Bogoyavlenskii, B.A., and Makh-no, V.D., Rastitel’nost’ Zapadno-Sibirskoi ravniny. Karta masshtaba 1 : 1 500 000 (Map of Vegetation of West Siberian Plain, Scale 1 : 1 500 000), Moscow: Glav. Upr. Geodez. Kartogr., 1976.

  17. Il’ina, I.S., Lapshina, E.I., Lavrenko, N.N., Mel’tser, L.I., Romanova, E.A., Bogoyavlenskii, B.A., and Makh-no, V.D., Rastitel’nyi pokrov Zapadnosibirskoi ravniny (Vegetation Cover of West Siberian Plain), Novosibirsk: Nauka, 1985.

  18. Key, C.H. and Benson, N.C., Measuring and remote sensing of burn severity, Proc. Joint Fire Science Conf. and Workshop, June 15–17,1999, Neuenschwander, L.F. and Ryan, K.C., Eds., Boise, ID: Univ. of Idaho, Int.Assoc. Wildland Fire, 1999, vol. 2.

  19. Key, C.H. and Benson, N.C., Landscape Assessment: Ground Measure of Severity, the Composite Burn Index/FIREMON: Fire Effects Monitoring and Inventory System. General Technical Report, Lutes, D.C., Ed., Ogden, UT: USDA Forest Serv., Rocky Mt. Res. Stn., 2005.

    Google Scholar 

  20. Kharuk, V.I. and Ponomarev, E.I., Spatiotemporal characteristics of wildfire frequency and relative area burned in larch-dominated forests of Central Siberia, Russ. J. Ecol., 2017, vol. 48, no. 6, pp. 507–512.

    Article  Google Scholar 

  21. Kharuk, V.I., Im, S.T., Renson, K.Dzh., and San, G., High resolution of satellite images in the analysis of temporal dynamics of forest-tundra ecotone, Issled. Zemli Kosm., 2005, no. 6, pp. 46–55.

  22. Kolden, C.A. and Abatzoglou, J.T., Wildfire consumption and interannual impacts by land cover in Alaskan boreal forest, Fire Ecol., 2012, vol. 8, no. 1, pp. 98–114.

    Article  Google Scholar 

  23. Methods of Dendrochronology: Applications in the Environmental Sciences, Cook, E.R. and Kairiukstis, L.A., Eds., Dordrecht: Kluwer, 1990.

    Google Scholar 

  24. Kornienko, S.G., Assessment of the impact of the development of the Urengoy oil and gas condensate field on the state of the forest-tundra territory according to Landsat satellite, Issled. Zemli Kosm., 2009, no. 4, pp. 78–87.

  25. Matveeva, N.V., Zonal’nost’ v rastitel’nom pokrove Arktiki (Zonality in Vegetation Cover of Arctic), St. Petersburg: Bot. Inst., Ross. Akad. Nauk, 1998.

  26. Miller, J.D. and Thode, A.E., Quantifying burn severity in a heterogenous landscape with a relative version of the delta Normalized Burn Ratio (dNBR), Remote Sens. Environ., 2007, vol. 109, pp. 66–80.

    Article  Google Scholar 

  27. Moskovchenko, D.V., Moskovchenko, M.D., and Tigeev, A.A., Evaluation of the area of natural fires in the Yamal-Nenets Autonomous Okrug using remote sensing data, Nauchn. Vestn. YaNAO, 2019, no. 2 (103), pp. 41–46.

  28. Odion, D.C. and Hanson, C.T., Fire severity in conifer forests of the Sierra Nevada, California, Ecosystems, 2006, vol. 9, pp. 1177–1189.

    Article  Google Scholar 

  29. Pavlov, A.V. and Malkova, G.V., Dynamics of cryolithozone of Russia affected by modern climate changes in 20th–21st centuries, Izv. Ross. Akad. Nauk, Ser. Geogr., 2010, no. 5, pp. 44–51.

  30. Ponomarev, E.I. and Kharuk, V.I., Wildfire occurrence in forests of the Altai–Sayan region under current climate changes, Contemp. Probl. Ecol., 2016, vol. 9, no. 1, pp. 29–36.

    Article  Google Scholar 

  31. Ponomarev, E.I., Ponomareva, T.V., and Skorobogatova, A.S., Wildfire occurrence in Siberia and seasonal variations in heat and moisture supply, Russ. Meteorol. Hydrol., 2018, vol. 43, no. 7, pp. 456–463.

    Article  Google Scholar 

  32. Potić, I.M., Ćurčić, N.B., Potić, M. M., Radovanović, M.M., and Tretiakova, T.N., Remote sensing role in environmental stress analysis: East Serbia wildfires case study (2007–2017), J. Geogr. Inst. Cvijic, 2017, vol. 67, no. 3, pp. 249–264.

    Article  Google Scholar 

  33. Rubtsov, A.V., Sukhinin, A.I., and Vaganov, E.A., System analysis of weather fire hazard in forecasting of large fires in Siberian forests, Issled. Zemli Kosm., 2010, no. 3, pp. 62–70.

  34. Salmi, T., Määttä, A., Anttila, P., Ruoho-Airola, T., and Amnell, T., Detecting Trends of Annual Values of Atmospheric Pollutants by the Mann-Kendall Test and Sen’s Slope Estimates: The Excel Template Application MAKESENS, Publications on Air Quality no. 31, Helsinki: Finn. Meteorol. Inst., 2002.

  35. Shiyatov, S.G., Vaganov, E.A., Kirdyanov, A.V., Kruglov, V.B., Mazepa, V.S., Naurzbaev, M.M., and Khantemirov, R.M., Metody dendrokhronologii. Chast’ 1. Osnovy dendrokhronologii. Sbor i poluchenie drevesno-kol’tsevoi informatsii (Methods of Dendrochronology, Part 1: Principles of Dendrochronology. Collection of Tree Ring Information), Krasnoyarsk: Krasnoyarsk. Gos. Univ., 2000.

  36. Shvidenko, A.Z. and Nilsson, S., Extent, distribution, and ecological role of fire in Russian forests, in Fire, Climate Change, and Carbon Cycling in the Boreal Forest, Kasischke, E.S. and Stocks, B.J., Eds., New York: Springer-Verlag, 2000, pp. 132–150.

    Google Scholar 

  37. Shvidenko, A.Z. and Schepaschenko, D.G., Climate change and wildfires in Russia, Contemp. Probl. Ecol., 2013, vol. 6, no. 7, pp. 683–692.

    Article  Google Scholar 

  38. Shvidenko, A.Z., Shchepashchenko, D.G., McCallum, I., Lakyda, I.P., Vaganov, E.A., Sukhinin, A.I., and Maksyutov, Sh.Sh., Impact of wildfire in Russia between 1998–2010 on ecosystems and the global carbon budget, Dokl. Earth Sci., 2011, vol. 441, no. 2, pp. 1678–1682.

    Article  CAS  Google Scholar 

  39. Soja, A.J., Shugart, H.H., Sukhinin, A., Conard, S., and Stackhouse, P.W., Jr., Satellite-derived mean fire return intervals as indicators of change in Siberia (1995–2002), Mitigation Adapt. Strategies Global Change, 2006, vol. 11, pp. 75–96.

    Article  Google Scholar 

  40. Soverel, N.O., Coops, N.C., Perrakis, D.D.B., Daniels, L.D., and Gergel, S.E., The transferability of a dNBR-derived model to predict burn severity across 10 wildland fires in western Canada, Int. J. Wildland Fire, 2011, vol. 20, pp. 518–531.

    Article  Google Scholar 

  41. Syphard, A.D., Keeley, J.E., Pfaff, A.H., and Ferschweiler, K., Human presence diminishes the importance of climate in driving fire activity across the United States, Proc. Natl. Acad. Sci. U.S.A., 2017, vol. 114, pp. 13750–13755.

    Article  CAS  Google Scholar 

  42. Tarabukina, V.G. and Savinov, D.D., Vliyanie pozharov na merzlotnye pochvy (Impact of Fires on Permafrost Soils), Novosibirsk: Nauka, 1990.

  43. Tsuyuzaki, S., Iwahana, G., and Saito, K., Tundra fire alters vegetation patterns more than the resultant thermokarst, Polar Biol., 2018, vol. 41, pp. 753–761.

    Article  Google Scholar 

  44. Ukraintseva, N.G., Drozdov, D.S., Popov, K.A., Gravis, A.G., and Matyshak, G.V., Landscape indication of local variability of properties of permafrost minerals (Urengoi field, Western Siberia), Kriosfera Zemli, 2011, vol. 15, no. 4, pp. 37–40.

    Google Scholar 

  45. Valendik, E.N., Kisilyakhov, E.K., Ryzhkova, V.A., Ponomarev, E.I., and Danilova, I.V., Conflagration fires in taiga landscapes of central Siberia, Geogr. Nat. Resour., 2014, vol. 35, no. 1, pp. 41–47.

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, grant no. 18–45–890002\18, and as a part of the basic research project program of the Siberian Branch of the Russian Academy of Sciences VI.52.1, project no. AAAA-A17-117050400146-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Moskovchenko.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. This article does not contain any studies involving animals performed by any of the authors.

Additional information

Translated by E. Kuznetsova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moskovchenko, D.V., Aref’ev, S.P., Moskovchenko, M.D. et al. Spatiotemporal Analysis of Wildfires in the Forest Tundra of Western Siberia. Contemp. Probl. Ecol. 13, 193–203 (2020). https://doi.org/10.1134/S1995425520020092

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995425520020092

Keywords:

Navigation