Skip to main content
Log in

Postfire Effects in Siberian Larch Stands on Multispectral Satellite Data

  • Published:
Contemporary Problems of Ecology Aims and scope

Abstract

This work considers the dynamics of vegetation indices and surface temperature of postfire areas of different ages in larch forests of the permafrost zone of Siberia obtained using long-term Terra/MODIS satellite imagery. Landsat/ETM and OLI satellite images were preliminarily classified to analyze the degree of pyrogenic disturbance in the sample of postfire sites. An increase in the average temperature of the underlying surface of the postpyrogenic areas by 3.9–4.6°C was recorded, depending on the degree of disturbance of the litter, which is 15–30% of the average background values. Compared with background values, the deviation (decrease) in the next postfire year was 22% for the NDVI and 72% for the NBR index. Recovery of the NDVI to background values required 7–10 years after the fire. The recovery period for the surface temperature and the NBR index are significantly higher, that is, 15 years and more. Moreover, for 15–20 years after the fire, the temperature anomalies of the underlying surface remain significant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Amiro, B.D., MacPherson, J.I., and Desjardins, R.L., BOREAS flight measurements of forest-fire effects on carbon dioxide and energy fluxes, Agric. For. Meteorol., 1999, vol. 96, pp. 199–208. https://doi.org/10.1016/S0168-1923(99)00050-7

    Article  Google Scholar 

  2. Anisimov, O.A. and Sherstyukov, A.B., Role of natural climate factors in transformation of permafrost zone of Russia, Kriosfera Zemli, 2016, vol. 20, no. 2, pp. 90–99.

    Google Scholar 

  3. Anisimov, O.A. and Belolutskaya, M.A., Impact of anthropogenic warming on permafrost conditions in models: vegetation effect, Russ. Meteorol. Hydrol., 2004, no. 11, pp. 52–58.

  4. Bartalev, S.A., Egorov, V.A., Krylov, A.M., Stytsenko, F.V., and Khovratovich, T.S., Study of the possibilities of firedisturbed forest state estimation using multispectral satellite measurements, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosm., 2010, vol. 7, no. 3, pp. 215–225.

    Google Scholar 

  5. Bartalev, S.A., Stytsenko, F.V., Egorov, V.A., and Lupyan, E.A., Satellite assessment of fire-caused forest mortality in Russia, Lesovedenie, 2015, no. 2, pp. 83–94.

  6. Bezkorovainaya, I.N., Borisova, I.V., Klimchenko, A.V., Shabalina, O.M., Zakharchenko, L.P., Il’in, A.A., and Beskrovnyi, A.K., Effect of pyrogenic factor on biological activity of soils in conditions of permafrost area (Central Evenkia), Vestn. Krasnoyarsk. Gos. Agrar. Univ., 2017, no. 9, pp. 181–189.

  7. Brown, J., Ferrians, O.J., Heginbottom, J.A., and Melnikov, E.S., Circum-Arctic Map of Permafrost and Ground Ice Conditions, Version 2, Boulder, CO: National Snow and Ice Data Center, 2002. https://nsidc.org/ data/ggd318.

    Google Scholar 

  8. Brown, D.R.N., Jorgenson, M.T., Douglas, T.A., Romanovsky, V.E., Kielland, K., Hiemstra, C., Euskirchen, E.S., and Ruess, R.W., Interactive effects of wildfire and climate on permafrost degradation in Alaskan lowland forests, J. Geophys. Res.: Biogeosci., 2015, vol. 120, pp. 1619–1637. https://doi.org/10.1002/2015JG003033

    Article  Google Scholar 

  9. Chu, T., Guo, X., and Takeda, K., Temporal dependence of burn severity assessment in Siberian larch (Larix sibirica) forest of northern Mongolia using remotely sensed data, Int. J. Wildland Fire, 2016, vol. 25, pp. 685–698. https://doi.org/10.1071/WF15182

    Article  Google Scholar 

  10. Cuevas-Gonzalez, M., Gerard, F., Balzter, H., and Rianos, D., Analyzing forest recovery after wildfire disturbance in boreal Siberia using remotely sensed vegetation indices, Global Change Biol., 2009, vol. 15, pp. 561–577. https://doi.org/10.1111/j.1365-2486.2008.01784.x

    Article  Google Scholar 

  11. Desyatkin, R.V., Desyatkin, A.R., and Fedorov, P.P., Temperature regime of permafrost taiga soils of Central Yakutia, Kriosfera Zemli, 2012, vol. 16, no. 2, pp. 70–78.

    Google Scholar 

  12. Escuin, S., Navarro, R., and Fernández, P., Fire severity assessment by using NBR (Normalized Burn Ratio) and NDVI (normalized difference vegetation index) derived from LANDSATTM/ETM images, Int. J. Remote Sens., 2008, vol. 29, pp. 1053–1073. https://doi.org/10.1080/01431160701281072

    Article  Google Scholar 

  13. Flannigan, M., Stocks, B., Turetsky, M., and Wotton, M., Impacts of climate change on fire activity and fire management in the circumboreal forest, Global Change Biol., 2009, vol. 15, no. 3, pp. 549–560. https://doi.org/10.1111/j.1365-2486.2008.01660.x

    Article  Google Scholar 

  14. French, N.H.F., Kasischke, E.S., Halle, R.J., Murphy, K.A., Verbyla, D.L., Hoy, E.E., and Allen, J.L., Using Landsat data to assess fire and burn severity in the North American boreal forest region: an overview and summary of results, Int. J. Wildland Fire, 2008, vol. 17, pp. 443–462. https://doi.org/10.1071/WF08007

    Article  Google Scholar 

  15. Gerard, F., Plummer, S., Wadsworth, R., Ferreruela, A., Iliffe, L., Balzter, H., and Wyatt, B., Forest fire scar detection in the boreal forest with multitemporal SPOT-VEGETATION data, IEEE Trans. Geosci. Remote Sens., 2003, vol. 41, pp. 2575–2585. https://doi.org/10.1109/TGRS.2003.819190

    Article  Google Scholar 

  16. Giglio, L., Justice, C., Boschetti, L., and Roy, D., Collection 6 MODIS burned area product user’s guide, 2016. https://doi.org/10.5067/MODIS/MCD64A1.006

  17. Hicke, J.A., Asner, G.P., Kasischke, E.S., French, N.H.F., Randerson, J.T., Collatz, J., Stocks, B.J., Tucker, C.J., Los, S.O., and Field, C.B., Postfire response of North American boreal forest net primary productivity analyzed with satellite observations, Global Change Biol., 2003, vol. 9, pp. 1145–1157. https://doi.org/10.1046/j.1365-2486.2003.00658.x

    Article  Google Scholar 

  18. Jiang, Y., Zhuang, Q., and O’Donnell, J.A., Modeling thermal dynamics of active layer soils and near-surface permafrost using a fully coupled water and heat transport model, J. Geophys. Res.: Atmos., 2012, vol. 117. https://doi.org/10.1029/2012JD017512

  19. Jin, Y., Randerson, J.T., Goulden, M.L., and Goetz, S.J., Post-fire changes in net shortwave radiation along a latitudinal gradient in boreal North America, Geophys. Res. Lett., 2012, vol. 39. https://doi.org/10.1029/2011JG001886

  20. Key, C.H. and Benson, N.C., Landscape assessment: sampling and analysis methods, in FIREMON: Fire Effects Monitoring and Inventory System, General Technical Report no. RMRS-GTR-164-CD, Lutes, D.C., et al., Eds., Fort Collins, CO: US Forest Service, 2006, pp. LA1–LA51,

  21. Kharuk, V.I. and Ponomarev, E.I., Spatiotemporal characteristics of wildfire frequency and relative area burned in larch-dominated forests of Central Siberia, Russ. J. Ecol., 2017, vol. 48, no. 6, pp. 507–512. https://doi.org/10.1134/S1067413617060042

    Article  Google Scholar 

  22. Lopez-Garcia, M.J. and Caselles, V., Mapping burns and natural reforestation using Thematic Mapper data, Geocarto Int., 1991, vol. 6, pp. 31–37. https://doi.org/10.1080/10106049109354290

    Article  Google Scholar 

  23. Miller, J.D. and Thode, A.E., Quantifying burn severity in a heterogeneous landscape with a relative version of the delta Normalized Burn Ratio (dNBR), Remote Sens. Environ., 2007, vol. 109, pp. 66–80. https://doi.org/10.1016/j.rse.2006.12.006

    Article  Google Scholar 

  24. Ponomarev, E.I. and Ponomareva, T.V., The effect of postfire temperature anomalies on seasonal soil thawing in the permafrost zone of Central Siberia evaluated using remote data, Contemp. Probl. Ecol., 2018, vol. 11, no. 4, pp. 420–427.

    Article  Google Scholar 

  25. Ponomarev, E.I. and Shvetsov, E.G., Satellite survey of forest fires and GIS methods in result calibration, Issled. Zemli Kosm., 2015, no. 1, pp. 84–91.

  26. Prikaz Minprirody Rossii no. 367 ot 18.08.2014 “Ob utverzhdenii Perechnya lesorastitel’nykh zon Rossiiskoi Federatsii i Perechnya lesnykh raionov Rossiiskoi Federatsii” (red. ot 19.02.2019) (Order of the Ministry of Nature of Russia No. 367 of August 18, 2014 “On Approval of the List of Forest Belts in Russian Federation and the List of Forest Regions of Russian Federation” Revised on February 19, 2019), Moscow, 2014.

  27. Rastitel’nost’ SSSR: karta masshtaba 1 : 4 000 000 (Vegetation of Soviet Union, Map Scale 1 : 4 000 000), Moscow: Glav. Uprav. Geod. Kartogr., 1990.

  28. Shvidenko, A.Z. and Schepaschenko, D.G., Climate change and wildfires in Russia, Contemp. Probl. Ecol., 2013, vol. 6, no. 7, pp. 683–692.

    Article  Google Scholar 

  29. Skryabin, P.N. and Varlamov, S.P., Thermal regime of grounds in disturbed landscapes of Central Yakutia, Kriosfera Zemli, 2013, vol. 17, no. 3, pp. 44–49.

    Google Scholar 

  30. Tarasov, P.A., Ivanov, V.A., and Ivanova, G.A., Specific temperature regime of soils in pine forests of middle taiga after near-surface fires, Khvoinye Boreal’noi Zony, 2008, vol. 25, nos. 3–4, pp. 300–304.

    Google Scholar 

  31. Urusevskaya, I.S., Martynenko, I.A., and Alyabina, I.O., Soil map, Scale 1 : 15 000 000, Explanatory note, in Natsional’nyi atlas pochv Rossiiskoi Federatsii (National Atlas of Soils of Russian Federation), Alyabin, I.O., Dobrovol’skii, G.V., Urusevskaya, I.S., et al., Moscow: AST, Astrel’, 2011, pp. 72–77.

  32. Veraverbeke, S., Verstraeten, W.W., Lhermitte, S., Van De Kerchove, R., and Goossens, R., Assessment of post-fire changes in land surface temperature and surface albedo, and their relation with fire–burn severity using multitemporal MODIS imagery, Int. J. Wildland Fire, 2012, vol. 21, pp. 243–256. https://doi.org/10.1071/WF10075

    Article  Google Scholar 

  33. Vermote, E.F., MOD09A1 MODIS Surface Reflectance 8‑Day L3 Global 500m SIN Grid V006, NASA EOSDIS Land Processes DAAC, 2015. https://doi.org/10.5067/MODIS/MOD09A1.006

  34. Wan, Z., Hook, S., and Hulley, G., MOD11A2 M-ODIS/Terra Land Surface Temperature/Emissivity 8-Day L3 Global 1km SIN Grid V006 (Data set), NASA EOSDIS LP DAAC, 2015. https://doi.org/10.5067/MODIS/MOD11A2.006

Download references

Funding

This work was financially supported by the Russian Foundation for Basic Research, project no. 0356-2019-0009; the government of Krasnoyarsk krai; and the Krasnoyarsk Krai Foundation for Scientific and Engineering Science Work project no. 18-41-242003 “Modeling and Remote Sensing of Effects Induced by Thermal Anomalies of Underlying Surface in the Seasonally Thawed Layer of Soils of Cryolithozone in Siberia” and project no. 18-05-00432 “Impact of Climate Change on Forests of Siberia: Analysis of Forest Area Fire Frequency, Increment for Accretion in Conifers, and Tree-Stand Vital State and Productivity.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. G. Shvetsov.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. This article does not contain any studies involving animals performed by any of the authors.

Additional information

Translated by E. Kuznetsova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shvetsov, E.G., Ponomarev, E.I. Postfire Effects in Siberian Larch Stands on Multispectral Satellite Data. Contemp. Probl. Ecol. 13, 104–112 (2020). https://doi.org/10.1134/S1995425520010096

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995425520010096

Keywords:

Navigation