Skip to main content
Log in

Proof-theoretic strengths of the well-ordering principles

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract

In this note the proof-theoretic ordinal of the well-ordering principle for the normal functions \(\mathsf {g}\) on ordinals is shown to be equal to the least fixed point of \(\mathsf {g}\). Moreover corrections to the previous paper (Arai in Arch Math Log 57:649–664, 2017) are made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Afshari, B., Rathjen, M.: Reverse mathematics and well-ordering principles: a pilot study. Ann. Pure Appl. Log. 160, 231–237 (2009)

    Article  MathSciNet  Google Scholar 

  2. Arai, T.: Some results on cut-elimination, provable well-orderings, induction and reflection. Ann. Pure Appl. Log. 95, 93–184 (1998)

    Article  MathSciNet  Google Scholar 

  3. Arai, T.: Derivatives of normal functions and \(\omega \)-models. Arch. Math. Log. 57, 649–664 (2017)

    Article  MathSciNet  Google Scholar 

  4. Girard, J.-Y.: Proof Theory and Logical Complexity, vol. 1. Bibliopolis, Napoli (1987)

    MATH  Google Scholar 

  5. Marcone, A., Montalbán, A.: The Veblen functions for computability theorists. J. Symb. Log. 76, 575–602 (2011)

    Article  MathSciNet  Google Scholar 

  6. Rathjen, M.: \(\omega \)-models and well-ordering principles. In: Tennant, N. (ed.) IFoundational Adventures: Essays in Honor of Harvey M. Friedman, pp. 179–212. College Publications, London (2014)

    Google Scholar 

  7. Rathjen, M., Weiermann, A.: Reverse mathematics and well-ordering principles. In: Cooper, S., Sorbi, A. (eds.) Computability in Context: Computation and Logic in the Real World, pp. 351–370. Imperial College Press, London (2011)

    Chapter  Google Scholar 

  8. Schütte, K.: Proof Theory. Springer, Berlin (1977)

    Book  Google Scholar 

  9. Simpson, S.G.: Subsystems of Second Order Arithmetic, 2nd Edition, Perspectives in Logic. Cambridge UP, Cambridge (2009)

    Book  Google Scholar 

  10. Takeuti, G.: A remark on Gentzen’s paper “Beweibarkeit und Unbeweisbarkeit von Anfangsfällen der transfiniten Induktion in der reinen Zahlentheorie”. Proc. Jpn. Acad. 39, 263–269 (1963)

    Article  Google Scholar 

  11. Takeuti, G.: Proof Theory, 2nd edn. North-Holland, Amsterdam (1987)

    MATH  Google Scholar 

Download references

Acknowledgements

I’d like to thank A. Freund for pointing out a flaw in [3], and the anonymous referee for a careful reading and helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiyasu Arai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arai, T. Proof-theoretic strengths of the well-ordering principles. Arch. Math. Logic 59, 257–275 (2020). https://doi.org/10.1007/s00153-019-00689-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-019-00689-4

Keywords

Mathematics Subject Classification

Navigation