Skip to main content
Log in

HELP: a sparse error locator polynomial for BCH codes

  • Original Paper
  • Published:
Applicable Algebra in Engineering, Communication and Computing Aims and scope

Abstract

In 1990 Cooper suggested to use Groebner bases’ computations to decode cyclic codes and his idea gave rise to many research papers. In particular, as proved by Sala-Orsini, once defined the polynomial ring whose variables are the syndromes, the locations and the error values and considered the syndrome ideal, only one polynomial of a lexicographical Groebner basis for such ideal is necessary to decode (the general error locator polynomial, a.k.a. GELP). The decoding procedure only consists in evaluating this polynomial in the syndromes and computing its roots: the roots are indeed the error locations. A possible bottleneck in this procedure may be the evaluation part, since a priori the GELP may be dense. In this paper, focusing on binary cyclic codes with length \(n=2^m-1\), correcting up to two errors, we give a Groebner-free, sparse analog of the GELP, the half error locator polynomial (HELP). In particular, we show that it is not necessary to compute the whole Groebner basis for getting such kind of locator polynomial and we construct the HELP, studying the quotient algebra of the polynomial ring modulo the syndrome ideal by a combinatorial point of view. The HELP turns out to be computable with quadratic complexity and it has linear growth in the length n of the code: \({\mathcal {O}}\left( \frac{n+1}{2}\right)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. In the paper [39], \({\mathcal {L}}\) is the general error locator polynomial.

  2. Indeed the last point has exponent \(2i+1=2(2^{m-1}-1)+1=2^{m}-1=n\). Note also that \(\vert \{0,\ldots ,2^{m-1}-1\}\cup \{-\infty \} \vert =2^{m-1}+1\).

References

  1. Alonso, M.E., Marinari, M.G., Mora, T.: The big Mother of all Dualities 2: Macaulay Bases. Appl. Algebra Eng. Commun. Comput. Arch. 17(6), 409–451 (2006)

    Article  MathSciNet  Google Scholar 

  2. Augot, D., Bardet, M., Faugère, J.-C.: Efficient decoding of (binary) cyclic codes above the correction capacity of the code using Groebner bases. Proc. ISIT 2003, 362 (2003)

    Google Scholar 

  3. Augot, D., Bardet, M., Faugère, J.-C.: On formulas for decoding binary cyclic codes. Proc. ISIT 2007, 2646–2650 (2007)

    Google Scholar 

  4. Berlekamp, E.R.: Algebraic Coding Theory. McGraw-Hill, New York (1968)

    MATH  Google Scholar 

  5. Caboara, M., Mora, T.: The Chen-Reed-Helleseth-Truong decoding algorithm and the Gianni-Kalkbrenner Groebner shape theorem. Appl. Algebra Eng. Commun. Comput. 13(3), 209–232 (2002)

    Article  Google Scholar 

  6. Caruso, F., Orsini, E., Tinnirello, C., Sala, M.: On the shape of the general error locator polynomial for cyclic codes. IEEE Trans. Inf. Theory 63.6, 3641–3657 (2017)

    Article  MathSciNet  Google Scholar 

  7. Ceria, M.: A proof of the “Axis of Evil theorem” for distinct points. Rendiconti del Seminario Matematico dell’Università e del Politecnico di Torino 72(3–4), 213–233 (2014)

    MathSciNet  MATH  Google Scholar 

  8. Ceria, M.: Bar Code for monomial ideals. J. Symb. Comput. 91, 30–56 (2019)

    Article  MathSciNet  Google Scholar 

  9. Ceria, M., Mora, T.: Combinatorics of ideals of points: a Cerlienco-Mureddu-like approach for an iterative lex game, arXiv preprint, arXiv:1805.09165 [math.AC]

  10. Ceria, M.: Half error locator polynomials for efficient decoding of binary cyclic codes, in preparation

  11. Ceria, M.: Macaulay, Lazard and the syndrome variety, arxiv preprint arXiv:1910.13189 [math.CO]

  12. Ceria, M., Mora, T., Sala, M.: Zech tableaux as tools for sparse decoding. Accepted by Rendiconti del Seminario Matematico, ISSN: 0373-1243

  13. Cerlienco, L., Mureddu, M.: Algoritmi combinatori per l’interpolazione polinomiale in dimensione \(\ge 2\). Séminaire Lotharingien de Combinatoire 24, 39–76 (1990)

    Google Scholar 

  14. Cerlienco, L., Mureddu, M.: From algebraic sets to monomial linear bases by means of combinatorial algorithms. Discrete Math. 139, 73–87 (1995)

    Article  MathSciNet  Google Scholar 

  15. Cerlienco, L., Mureddu, M.: Multivariate interpolation and standard bases for Macaulay modules. J. Algebra 251, 686–726 (2002)

    Article  MathSciNet  Google Scholar 

  16. Chen, X., Reed, I.S., Helleseth, T., Truong, T.K.: General principles for the algebraic decoding of cyclic codes. EEE Trans. Inf. Theory 40, 1661–1663 (1994a)

    Article  MathSciNet  Google Scholar 

  17. Chen, X., Reed, I.S., Helleseth, T., Truong, T.K.: Use of Groebner bases to decode binary cyclic codes up to the true minimum distance. IEEE Trans. Inf. Theory 40(5), 1654–1661 (1994c)

    Article  Google Scholar 

  18. Chen, X., Reed, I.S., Helleseth, T., Truong, T.K.: Algebraic decoding of cyclic codes: a polynomial ideal point of view. Contemp. Math. Amer. Math. Soc. 168, 15–22 (1994b)

  19. Cooper III, A.B.: Direct solution of BCH syndrome equations. In: Arkian, E. (Ed.) Communications, Control, and Signal Processing, Elsevier, pp. 281–286 (1990)

  20. Cooper III, A.B.: Finding BCH error locator polynomials in one step. Electron. Lett. 27(22), 2090–2091 (1991)

    MATH  Google Scholar 

  21. Felszeghy, B., Ráth, B., Rónyai, L.: The lex game and some applications. J. Symb. Comput. 41, 663–681 (2006)

    Article  MathSciNet  Google Scholar 

  22. Gianni, P.: Properties of Gröbner bases under specialization. L. N. Comp. Sci. 378, 293–297 (1987)

    MATH  Google Scholar 

  23. Huffman, W.C., Pless, V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  24. Kalkbrenner, M.: Solving systems of algebraic equations by using Groebner bases. L. N. Comp. Sci. 378, 282–292 (1987)

    Google Scholar 

  25. Kalkbrenner, M.: On the stability of Gröbner Bases under specialization. J. Symb. Comp. 24, 51–58 (1997)

    Article  Google Scholar 

  26. Lidl, R., Niederreiter, H.: Finite Fields, Volume 20, Parte 1 Volume 20 di Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge (1997)

    Google Scholar 

  27. Loustaunau, P., York, E.V.: On the decoding of cyclic codes using Gröbner bases. AAECC 8(6), 469–483 (1997)

    Article  Google Scholar 

  28. Lundqvist, S.: Vector space bases associated to vanishing ideals of points. J. Pure Appl. Algebra 214(4), 309–321 (2010)

    Article  MathSciNet  Google Scholar 

  29. Mora, T., Perret, L., Sakata, S., Sala, M., Traverso, C.: Groebner Bases, Coding, and Cryptography. Springer, Berlin (2009)

    MATH  Google Scholar 

  30. Orsini, E., Mora, T.: Decoding cyclic codes: the Cooper Philosophy. In: Sala, M. (ed.) Groebner Bases, Coding, and Cryptography, pp. 62–92. Springer, Berlin (2009)

    Google Scholar 

  31. Mora, T., Orsini, E., Sala, M.: General error locator polynomials for binary cyclic codes with \(t \le 2\) and \(n < 63\), BCRI preprint, 43, UCC, Cork, Ireland. http://www.bcri.ucc.ie/FILES/PUBS/BCRI_44.pdf (2006). Accessed 10 Apr 2020

  32. Orsini, E., Sala, M.: Correcting errors and erasures via the syndrome variety. J. Pure Appl. Algebra 200, 191–226 (2005)

    Article  MathSciNet  Google Scholar 

  33. Mora, T.: Solving polynomial equation systems. I. The Kronecker-Duval philosophy. Cambridge University Press, Cambridge, pp. xiv+423 (2003)

    Book  Google Scholar 

  34. Mora, T.: Solving polynomial equation systems. II. Macaulay's paradigm and Gröbner technology. Cambridge University Press, Cambridge, pp. xxii+759 (2005)

    Book  Google Scholar 

  35. Mora, T.: Solving polynomial equation systems. Vol. III. Algebraic solving. Cambridge University Press, Cambridge, pp. xviii+275 (2015)

    Book  Google Scholar 

  36. Mora, T.: Solving polynomial equation systems. Vol. IV. Buchberger theory and beyond. Cambridge University Press, Cambridge, pp. xi+820 (2016)

    Book  Google Scholar 

  37. Mora, T.: An FGLM-like algorithm for computing the radical of a zero-dimensional ideal. Journal of Algebra and Its Applications 17(01), 1850002-1–1850002-17 (2018)

  38. Mourrain, B.: Bezoutian and quotient ring structure. J. Symb. Comp. 39, 397–415 (2005)

    Article  MathSciNet  Google Scholar 

  39. Orsini, E., Sala, M.: General error locator polynomials for binary cyclic codes with \(t \le 2\) and \(n< 63\). IEEE Trans. Inf. Theory 53, 1095–1107 (2007)

    Article  Google Scholar 

  40. Peterson, W.W.: Encoding and error-correction procedures for the Bose-Chaudhuri codes. IEEE Trans. Inform. Theory, IT-6, 459–470 (1960)

  41. Rouillier, F.: Solving zero-dimensional systems through the rational univariate representation. J. AAECC 9, 433–461 (1999)

    Article  MathSciNet  Google Scholar 

  42. Sala, M.: Groebner basis techniques to compute weight distributions of shortened cyclic codes. J. Algebra Appl. 6(03), 403–414 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michela Ceria.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research has been partially funded by INdAM - Istituto Nazionale di Alta Matematica.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ceria, M., Mora, T. & Sala, M. HELP: a sparse error locator polynomial for BCH codes. AAECC 31, 215–233 (2020). https://doi.org/10.1007/s00200-020-00427-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00200-020-00427-x

Keywords

Mathematics Subject Classification

Navigation