Skip to main content
Log in

An \(L^2\) Dolbeault lemma and its applications to vanishing theorems

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

In this paper, we will first build an \(L^2\) Dolbeault lemma by analytic methods and Hörmander \(L^2\) estimates. Then as applications, we will prove some log Nadel type vanishing theorems on compact Kähler manifolds and some log Kawamata–Viehweg type vanishing theorems on projective manifolds. Some log Nakano–Demailly type vanishing theorems for vector bundles will be also discussed by the same methods; one of which generalizes the original Nakano vanishing theorem on compact Kähler manifolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Andreotti, A., Vesentini, E.: Carleman estimates for the Laplace–Beltrami equation on complex manifolds. Math. Publ. IHS 25, 81–130 (1965)

    Article  MathSciNet  Google Scholar 

  2. Demailly, J.-P.: Analytic Methods in Algebraic Geometry. Surveys of Modern Mathematics, vol. 1. Higher Education Press, Beijing (2010)

    Google Scholar 

  3. Demailly, J.P.: Complex Analytic and Differential Geometry. Book online http://www-fourier.ujf-grenoble.fr/~demailly/books.html

  4. Demailly, J.P.: \(L^2\) Vanishing Theorems for Positive Line Bundles and Adjunction Theory Transcendental Methods in Algebraic Geometry, pp. 1–97. Springer, Berlin (1996)

    Google Scholar 

  5. Demailly, J.P.: Estimations \(\rm L^2\) pour l’oprateur \(\ bar\ partial \) d’un fibr vectoriel holomorphe semi-positif au-dessus d’une varit kählrienne complte. In: Annales Scientifiques de l’Ecole Normale Suprieure. 15(3), 457–511 (1982)

  6. Damailly, J.P.: Singular Hermitian Metrics on Positive Line Bundles. Complex Algebraic Varieties, pp. 87–104. Springer, Berlin (1992)

    Google Scholar 

  7. Esnault, H., Viehweg, E.: Logarithmic de Rham complexes and vanishing theorems. Invent. Math. 86, 161–194 (1986)

    Article  MathSciNet  Google Scholar 

  8. Esnault, H., Viehweg, E.: Lectures on Vanishing Theorems, DMV Seminar, vol. 20. Birkhauser Verlag, Basel (1992)

    Book  Google Scholar 

  9. Fujiki, A.: An \(L^2\) Dolbeault lemma and its applications. Publ. RIMS Kyoto Univ. 28, 845–884 (1992)

    Article  MathSciNet  Google Scholar 

  10. Hörmander, L.: \(L^2\) estimates and existence theorems for the \({\overline{\partial }}\) operator. Acta Math. 113(1), 89–152 (1965)

    Article  MathSciNet  Google Scholar 

  11. Huang, C., Liu, K., Wan, X., Yang, X.: Logarithmic vanishing theorems on compact Kähler manifolds I. ArXiv preprint arXiv:1611.07671 (2016)

  12. Kawamata, Y.: A generalization of Kodaira–Ramanujam’s vanishing theorem. Math. Ann. 261(1), 43–46 (1982)

    Article  MathSciNet  Google Scholar 

  13. Liu, K.-F., Sun, X.-F., Yang, X.-K.: Positivity and vanishing theorems for ample vector bundles. J. Algebraic Geom. 22, 303–331 (2013)

    Article  MathSciNet  Google Scholar 

  14. Luo, H.-Z.: Stability of Algebraic Manifolds. Massachusetts Institute of Technology, Cambridge (1998)

    Google Scholar 

  15. Morrow, J.A., Kodaira, K.: Complex Manifolds. American Mathematical Society, Providence (1971)

    MATH  Google Scholar 

  16. Nadel, A.M.: Multiplier ideal sheaves and Kahler–Einstein metrics of positive scalar curvature. Ann. Math. 132, 549–596 (1990)

    Article  MathSciNet  Google Scholar 

  17. Norimatsu, Y.: Kodaira vanishing theorem and Chern classes for \( partial \)-manifolds. Proc. Jpn. Acad. Ser. A Math. Sci. 54, 107–108 (1978)

    Article  MathSciNet  Google Scholar 

  18. Ohsawa, T.: \(L^2\) Approaches in Several Complex Variables. Springer, Berlin (2015)

    Google Scholar 

  19. Shiffman, B., Sommese, A.J.: Vanishing Theorems on Complex Manifolds Progress in Mathematics, vol. 56. Birkhauser, Boston (1985)

    Book  Google Scholar 

  20. Timmerscheidt, K.: Hodge decomposition for unitary local systems. Appendix to Esnault, H., Viehweg, E.: Logarithmic deRham complexes and vanishing theorems. Invent. Math. 86, 161–194 (1986)

  21. Viehweg, E.: Vanishing theorems. J. Reine Angew. Math. 335(1), 8 (1982)

    MathSciNet  MATH  Google Scholar 

  22. Zucker, S.: Hodge theory with degenerating coefficients: \(L^2\) cohomology in the Poincaré metric. Ann. Math. 109, 415–476 (1979)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author would like to thank the referee for carefully reading the paper and for valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunle Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, C. An \(L^2\) Dolbeault lemma and its applications to vanishing theorems. Ann Glob Anal Geom 57, 205–215 (2020). https://doi.org/10.1007/s10455-019-09695-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-019-09695-4

Keywords

Navigation