Skip to main content
Log in

Coquasi-Bialgebras with Preantipode and Rigid Monoidal Categories

  • Published:
Algebras and Representation Theory Aims and scope Submit manuscript

Abstract

By a theorem of Majid, every monoidal category with a neutral quasi-monoidal functor to finitely generated and projective \(\Bbbk \)-modules gives rise to a coquasi-bialgebra. We prove that if the category is also rigid, then the associated coquasi-bialgebra admits a preantipode, providing in this way an analogue for coquasi-bialgebras of Ulbrich’s reconstruction theorem for Hopf algebras. When \(\Bbbk \) is a field, this allows us to characterize coquasi-Hopf algebras as well in terms of rigidity of finite-dimensional corepresentations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abe, E.: Hopf Algebras Cambridge Tracts in Mathematics, vol. 74. Cambridge University Press, Cambridge (1980)

    Google Scholar 

  2. Aguiar, M., Mahajan, S.: Monoidal Functors, Species and Hopf Algebras CRM Monograph Series, vol. 29. American Mathematical Society, Providence (2010)

    Book  Google Scholar 

  3. Ardizzoni, A., Bulacu, D., Menini, C.: Quasi-bialgebra structures and torsion-free abelian groups. Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 56(104), 3,247–265 (2013)

    MathSciNet  MATH  Google Scholar 

  4. Ardizzoni, A., El Kaoutit, L., Saracco, P.: Functorial constructions for non-associative algebras with applications to quasi-bialgebras. J. Algebra 449, 460–496 (2016)

    Article  MathSciNet  Google Scholar 

  5. Ardizzoni, A., Pavarin, A.: Preantipodes for dual Quasi-Bialgebras, Israel. J. Math. 192(1), 281–295 (2012)

    MathSciNet  MATH  Google Scholar 

  6. Ardizzoni, A., Pavarin, A.: Bosonization for dual quasi-bialgebras and preantipode. J. Algebra 390, 126–159 (2013)

    Article  MathSciNet  Google Scholar 

  7. Deligne, P., Milne, J. S., Ogus, A., Shih, K.-y.: Tannakian categories. In: Milne, J.S. (ed.) Hodge Cycles, Motives, and Shimura Varieties by Pierre Deligne. Lecture Notes in Math. 900, Springer (1982)

  8. Drinfel’d, V. G.: Quasi-hopf algebras. (Russian) Algebra Anal. 1(6), 114–148 (1989)

    MathSciNet  Google Scholar 

  9. Drinfel’d, V. G.: Translation in Leningrad. Math. J. 1(6), 1419–1457 (1990)

    MathSciNet  Google Scholar 

  10. El Kaoutit, L., Gómez-Torrecillas, J.: Infinite comatrix corings. Int. Math. Res. Not. 39, 2017–2037 (2004)

    Article  MathSciNet  Google Scholar 

  11. Gómez-Torrecillas, J., Vercruysse, J.: Comatrix corings and Galois comodules over firm rings. Represent. Theory 10(3), 271–306 (2007)

    Article  MathSciNet  Google Scholar 

  12. Häring-Oldenburg, R.: Reconstruction of weak quasi Hopf algebras. J. Algebra 194(1), 14–35 (1997)

    Article  MathSciNet  Google Scholar 

  13. Joyal, A., Street, R.: An introduction to Tannaka duality and quantum groups. Category theory (Como, 1990), 413-492, Lecture Notes in Math, vol. 1488. Springer, Berlin (1991)

    Google Scholar 

  14. Majid, S.: Foundations of Quantum Group Theory. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  15. Majid, S.: Tannaka-Kreı̆n Theorem for quasi-Hopf Algebras and Other Results. Deformation Theory and Quantum Groups with Applications to Mathematical Physics (Amherst, MA, 1990), 219–232, Contemp Math 134. Amer. Math. Soc., Providence (1992)

  16. Mac Lane, S.: Categories for the Working Mathematician. Second Edition Graduate Texts in Mathematics, vol. 5. Springer, New York (1998)

    Google Scholar 

  17. Saavedra Rivano, N.: Catégories Tannakiennes. Springer LNM 265 (1972)

  18. Saracco, P.: On the structure theorem for Quasi-Hopf bimodules appl categor struct. https://doi.org/10.1007/s10485-015-9408-9 (2015)

  19. Schauenburg, P.: Hopf algebra extensions and monoidal categories. New directions in Hopf algebras, vol. 43, pp. 321–381, Math. Sci. Res. Inst. Publ., Cambridge Univ. Press

  20. Schauenburg, P., bimodules, Hopf: Coquasibialgebras, and an exact sequence of Kac. Adv. Math. 163, 194–263 (2002). Cambridge

    Article  MathSciNet  Google Scholar 

  21. Schauenburg, P.: Tannaka Duality for Arbitrary Hopf Algebras Algebra Berichte [Algebra Reports], vol. 66. Verlag Reinhard Fischer, Munich (1992)

    Google Scholar 

  22. Schauenburg, P.: Two characterizations of finite quasi-Hopf algebras. J. Algebra 273(2), 538–550 (2004)

    Article  MathSciNet  Google Scholar 

  23. Street, R.: Quantum groups. A Path to Current Algebra Australian Mathematical Society Lecture Series, vol. 19. Cambridge University Press, Cambridge (2007)

    Book  Google Scholar 

  24. Sweedler, M. E.: Hopf algebras. Mathematics Lecture Note Series, W. A. Benjamin, Inc., New York (1969)

    MATH  Google Scholar 

  25. Ulbrich, K. H.: On Hopf algebras and rigid monoidal categories. Israel J. Math. 72, 252–256 (1990)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This paper was written while the author was member of the ”National Group for Algebraic and Geometric Structures and their Applications” (GNSAGA-INdAM). The author is sincerely grateful to Alessandro Ardizzoni and Claudia Menini for their contribution and to the referee for her/his useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Saracco.

Additional information

Presented by: Michel Van den Bergh

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: A relation for the preantipode of a quasi-bialgebra

Appendix A: A relation for the preantipode of a quasi-bialgebra

Recall from [18] that a preantipode for a quasi-bialgebra (A, Δ, ε, m, u, Φ) is a \(\Bbbk \)-linear map S : AA that satisfies

$$ \sum a_{1}S(ba_{2})=\varepsilon(a)S(b)= \sum S(a_{1}b)a_{2}, \qquad \sum {\Phi}^{1}S({\Phi}^{2}){\Phi}^{3}=1, $$
(1)

for all a,bA, where \(\sum {\Phi }^{1}\otimes {\Phi }^{2}\otimes {\Phi }^{3}={\Phi }\). Let us introduce also the following extended notation for the reassociator and its inverse:

$$ \begin{array}{@{}rcl@{}} {\Phi} =\sum {\Phi}^{1}\otimes {\Phi}^{2}\otimes {\Phi}^{3}=\sum {\Psi}^{1}\otimes {\Psi}^{2}\otimes {\Psi}^{3}={\ldots} \\ {\Phi}^{-1} =\sum \varphi^{1}\otimes \varphi^{2}\otimes \varphi^{3}=\sum \psi^{1}\otimes \psi^{2}\otimes \psi^{3}=\ldots \end{array} $$

Let (A,m,u,Δ,ε,Φ,S) be a quasi-bialgebra with preantipode and consider the A-actions on End(A) = Hom(A,A) defined by \(\left (f\leftharpoonup a\right )(b) = f(ab)\) and \(\left (a\rightharpoonup f\right )(b) = f(ba)\) for all a,bA and for all fEndA. Define the elements

$$ \begin{array}{@{}rcl@{}} p :=\sum \varphi^{1}\otimes \varphi^{2}\left( \varphi^{3}\rightharpoonup S\right) & \in & A\otimes \mathsf{End}{A} , \end{array} $$
(2)
$$ \begin{array}{@{}rcl@{}} q :=\sum \left( S \leftharpoonup \varphi^{1}\right) \varphi^{2}\otimes \varphi^{3} & \in & \mathsf{End}{A}\otimes A, \end{array} $$

where \(\left (x\left (y\rightharpoonup f\right )\right )(a) = xf(ay)\) and \(\left (\left (f\leftharpoonup x\right )y\right )(a) = f(ax)y\) for all a,x,yA and for all fEndA. Let us introduce the following notation for shortness:

$$ p:=\sum p^{1}\otimes p^{2} \qquad \textrm{ and } \qquad q:=\sum q^{1}\otimes q^{2}. $$

Lemma.

In the foregoing notation we have that for every aA

$$ \begin{array}{ll} \displaystyle{\sum p^{1}\otimes p^{2}(a) =\sum {\varphi_{1}^{1}}\psi^{1}\otimes {\varphi_{2}^{1}}\psi^{2}{\Phi}^{1}S\left( a\varphi^{2}{\psi_{1}^{3}}{\Phi}^{2}\right) \varphi^{3}\psi_{2}^{3}{\Phi}^{3},}\\ \displaystyle{\sum q^{1}(a)\otimes q^{2} =\sum {\Phi}^{1}{\varphi_{1}^{1}}\psi^{1}S\left( {\Phi}^{2}\varphi_{2}^{1}\psi^{2} a\right) {\Phi}^{3}\varphi^{2}{\psi_{1}^{3}}\otimes \varphi^{3}{\psi_{2}^{3}}.}\end{array} $$
(33)

Moreover, the following relations hold for every a,bA

$$ \begin{array}{@{}rcl@{}} \sum p^{1}a\otimes p^{2}(b) & = \sum a_{11}p^{1}\otimes a_{12}p^{2}(ba_{2}), \end{array} $$
(34)
$$ \begin{array}{@{}rcl@{}} \sum q^{1}(a)\otimes bq^{2} & = \sum q^{1}(b_{1}a)b_{21}\otimes q^{2}b_{22}. \end{array} $$
(35)

Proof

The reassociator Φ satisfies the dual relation to Eq. 3, i.e.

$$ (1_{A}\otimes {\Phi} ) \cdot (A\otimes {\Delta} \otimes A)\left( {\Phi} \right) \cdot \left( {\Phi} \otimes 1_{A}\right)= (A\otimes A\otimes {\Delta} )\left( {\Phi} \right) \cdot ({\Delta} \otimes A\otimes A)\left( {\Phi} \right). $$

In particular, it satisfies

$$ \sum {\varphi_{1}^{1}}\psi^{1}\otimes {\varphi_{2}^{1}}\psi^{2}{\Phi}^{1}\otimes \varphi^{2}{\psi_{1}^{3}}{\Phi}^{2}\otimes \varphi^{3}\psi_{2}^{3}{\Phi}^{3}=\sum \varphi^{1}\psi^{1}\otimes \varphi^{2}\psi_{1}^{2}\otimes \varphi^{3}{\psi_{2}^{2}}\otimes \psi^{3}. $$

Applying \(\left (A\otimes m\right ) \left (A\otimes A\otimes m\right ) \left (A\otimes A\otimes (S\leftharpoonup a)\otimes A\right ) \) to both sides we get

$$ \begin{array}{@{}rcl@{}} && \sum {\varphi_{1}^{1}}\psi^{1}\otimes {\varphi_{2}^{1}}\psi^{2}{\Phi}^{1}S\left( a \varphi^{2}{\psi_{1}^{3}}{\Phi}^{2}\right) \varphi^{3}\psi_{2}^{3}{\Phi}^{3} \\ && = \sum \varphi^{1}\psi^{1}\otimes \varphi^{2}\psi_{1}^{2}S\left( a \varphi^{3}{\psi_{2}^{2}}\right) \psi^{3} \stackrel{(31)}{=} \sum \varphi^{1}\otimes \varphi^{2}S\left( a \varphi^{3}\right) = \sum p^{1}\otimes p^{2}(a), \end{array} $$

which is the first identity in Eq. 33. The second one is proved analogously. Let us check that Eq. 34 holds as well ((35) is proved similarly). We compute

$$ \begin{array}{@{}rcl@{}} \sum p^{1}a\otimes p^{2}(b) & \stackrel{(32)}{=}& \sum \varphi^{1}a\otimes \varphi^{2}S(b\varphi^{3}) \stackrel{(31)}{=} \sum \varphi^{1}a_{1}\otimes \varphi^{2}a_{21}S(b\varphi^{3}a_{22}) \\ & \stackrel{(*)}{=}& \sum a_{11}\varphi^{1}\otimes a_{12}\varphi^{2}S(ba_{2}\varphi^{3}) = \sum a_{11}p^{1}\otimes a_{12}p^{2}(ba_{2}), \end{array} $$

where in (∗) we used the quasi-coassociativity Φ ⋅ (Δ ⊗ A)Δ = (A ⊗Δ)Δ ⋅Φ. □

Lemma.

Let (A,m,u,Δ,ε,Φ,S) be a quasi-bialgebra with preantipode and let p,q be defined as above. For all aA we have that

$$ S(a)=\sum q^{1}\left( 1_{A}\right)S\left( p^{1}aq^{2}\right) p^{2}\left( 1_{A}\right)=\sum S\left( \varphi^{1}\right) \varphi^{2}S\left( \psi^{1}a\varphi^{3}\right) \psi^{2}S\left( \psi^{3}\right) . $$

Proof

Keeping in mind that Φ− 1 is counital, i.e. that it satisfies

$$ \left( \varepsilon\otimes A\otimes A\right)\left( {\Phi}^{-1}\right)=1_{A}\otimes 1_{A}=\left( A\otimes \varepsilon\otimes A\right)\left( {\Phi}^{-1}\right)=1_{A}\otimes 1_{A}=\left( A\otimes A\otimes \varepsilon\right)\left( {\Phi}^{-1}\right), $$

we may compute directly

$$ \begin{array}{@{}rcl@{}} && \sum S\left( \varphi^{1}\right) \varphi^{2}S\left( \psi^{1}a\varphi^{3}\right) \psi^{2}S\left( \psi^{3}\right) =\sum q^{1}\left( 1_{A}\right)S\left( p^{1}aq^{2}\right) p^{2}\left( 1_{A}\right) \\ && \stackrel{(33)}{=} \sum {\Phi}^{1}{\varphi_{1}^{1}}\psi^{1}S\left( {\Phi}^{2}{\varphi_{2}^{1}}\psi^{2}\right) {\Phi}^{3}\varphi^{2} {\psi_{1}^{3}}S\left( {\gamma_{1}^{1}}\phi^{1}a\varphi^{3}{\psi_{2}^{3}}\right) {\gamma_{2}^{1}} \phi^{2}{\Psi}^{1}S\left( \gamma^{2} {\phi_{1}^{3}}{\Psi}^{2}\right) \gamma^{3}{\phi_{2}^{3}}{\Psi}^{3} \\ && \stackrel{(31)}{=} \sum {\Phi}^{1}{\varphi_{1}^{1}}S\left( {\Phi}^{2}\varphi_{2}^{1}\right) {\Phi}^{3}\varphi^{2}S\left( \phi^{1}a\varphi^{3}\right) \phi^{2}{\Psi}^{1}S\left( {\phi_{1}^{3}}{\Psi}^{2}\right) \phi_{2}^{3}{\Psi}^{3} \\ && \stackrel{(31)}{=} \sum {\Phi}^{1}S\left( {\Phi}^{2}\right) {\Phi}^{3}S\left( a\right) {\Psi}^{1}S\left( {\Psi}^{2}\right) {\Psi}^{3}=S(a). \end{array} $$

Proposition.

Let (A,m,u,Δ,ε,Φ,S) be a quasi-bialgebra with preantipode. For all a,bA we have

$$ S\left( ab\right) =\sum S\left( \varphi^{1}b\right) \varphi^{2}S\left( \psi^{1}\varphi^{3}\right) \psi^{2}S\left( a\psi^{3}\right) . $$
(36)

Proof

We know from Lemma A.2 that \(S(a)=\sum q^{1}\left (1_{A}\right )S\left (p^{1}aq^{2}\right ) p^{2}\left (1_{A}\right )\). Relation (36) is proved directly by applying it to \(S\left (ab\right ) \):

$$ \begin{array}{@{}rcl@{}} S\left( ab\right) &\stackrel{\phantom{(52)}}{=}&\sum q^{1}\left( 1_{A}\right)S\left( p^{1}abq^{2}\right) p^{2}\left( 1_{A}\right) \stackrel{(34)}{=} \sum q^{1}\left( 1_{A}\right)S\left( a_{11}p^{1}bq^{2}\right)a_{12} p^{2}(a_{2}) \\ & \stackrel{(31)}{=}& \sum q^{1}\left( 1_{A}\right)S\left( p^{1}bq^{2}\right) p^{2}(a) \stackrel{(35)}{=} \sum q^{1}(b_{1})b_{21}S\left( p^{1}q^{2}b_{22}\right) p^{2}(a) \\ & \stackrel{(31)}{=}& \sum q^{1}(b)S\left( p^{1}q^{2}\right) p^{2}(a) = \sum S\left( \varphi^{1}b\right) \varphi^{2}S\left( \psi^{1}\varphi^{3}\right) \psi^{2}S\left( a\psi^{3}\right). \end{array} $$

Formula (36) can be viewed as an anti-multiplicativity of the preantipode.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saracco, P. Coquasi-Bialgebras with Preantipode and Rigid Monoidal Categories. Algebr Represent Theor 24, 55–80 (2021). https://doi.org/10.1007/s10468-019-09931-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10468-019-09931-2

Keywords

Mathematics Subject Classification (2010)

Navigation