Skip to main content

Advertisement

Log in

Talagrand Inequality on Free Path Space and Application to Stochastic Reaction Diffusion Equations

  • Published:
Acta Mathematicae Applicatae Sinica, English Series Aims and scope Submit manuscript

Abstract

By using a split argument due to [1], the transportation cost inequality is established on the free path space of Markov processes. The general result is applied to stochastic reaction diffusion equations with random initial values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bao, J., Wang, F.Y., Yuan, C. Transportation cost inequalities for neutral functional stochastic equations. J. Anal. Appl., 32: 457–475 (2013)

    MathSciNet  MATH  Google Scholar 

  2. Bobkov, S., Gentil, I., Ledoux, M. Hypercontractivity of Hamilton-Jacobi equations. J. Math. Pure Appl., 80: 669–696 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bobkov, S., Götze, F. Exponential integrability and transportation cost related to logarithmic Sobolev inequalities. J. Funct. Anal., 163: 1–28 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Djellout, H., Guilin, A., Wu, L. Transportation cost-information inequalities for random dynamical systems and diffusions. Ann. Probab., 32: 2702–2732 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Fang, S., Shao, J. Transportation cost inequalities on path and loop groups. J. Funct. Anal., 218: 293–317 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fang, S., Wang, F.Y. Analysis on free Riemannian path spaces. Bull. Sci. Math., 129: 339–355 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gozlan, N., Léonard, C. A large deviation approach to some transportation cost inequalities. Probab. Theory Related Fields, 139: 235–283 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gozlan, N., Roberto, C., Samson, P.M. A new characterization of Talagrand’s transport-entropy inequalities and applications. Ann. Probab., 39: 857–880 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gross, L. Logarithmic Sobolev inequalities on loop groups. J. Funct. Anal., 102: 268–313 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  10. Khoshnevisan, D., Sarantsev, A. Talagrand concentration inequalities for stochastic partial differential equations, arXiv:1709.07098v3

  11. Ledoux, M. The Concentration of Measure Phenomenon. Mathematical Surveys and Monographs, American Mathematical Society, Providence, 2001

    Google Scholar 

  12. Ma, Y. Transportation inequalities for stochastic differential equations with jumps. Stochastic Process. Appl., 120: 2–21 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Otto, F., Villani, C. Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality. J. Funct. Anal., 173: 361–400 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Pal, S. Concentration for multidimensional diffusions and their boundary local times. Probab. Theory Relat. Fields, 154: 225–254 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Shang, S., Zhang, T. Quadratic transportation cost inequality for stochastic reaction diffusion equations driven by multiplicative space-time white noise, arXiv: 1904.13162

    Google Scholar 

  16. Shao, J. Hamilton-Jacobi semi-groups in infinite-dimensional spaces. Bull. Sci. Math., 130: 720–738 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Saussereau, B. Transportation inequalities for stochastic differential equations driven by a fractional Brownian motion. Bernoulli, 18: 1–23 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Talagrand, M. Transportation cost for Gaussian and other product measures. Geom. Funct. Anal., 6: 587–600 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  19. Üstünel, A.S. Introduction to Analysis on Wiener Space, Lecture Notes in Math., Springer, Berlin, 1995

    Book  Google Scholar 

  20. Üstünel, A.S. Transport cost inequalities for diffusions under uniform distance. In: Stochastic Analysis and Related Topics, Springer, Berlin, 2012, 203–214

    Chapter  Google Scholar 

  21. Walsh, J.B. An introduction to stochastic partial differential equations. Lecture Notes in Math., Vol. 1180, Springer, Berlin, 1986, 265–439

    Google Scholar 

  22. Wang F.Y. Transportation cost inequalities on path spaces over Riemannian manifolds. Illinois J. Math., 46: 1197–1206 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wang, F.Y. Probability distance inequalities on Riemannian manifolds and path spaces. J. Funct. Anal., 206: 167–190 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wang, F.Y. Transportation-cost inequalities on path spaces over manifolds with boundary. Docum. Math., 18: 297–322 (2013)

    MathSciNet  MATH  Google Scholar 

  25. Wu, L. Transportation inequalities for stochastic differential equations of pure jumps. Ann. Inst. Henri Poincaré Probab. Stat., 46: 465–479 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Wu, L., Zhang, Z. Talagrand’s T2-transportation inequality w.r.t. a uniform metric for diffusions. Acta Math. Appl. Sin. Engl. Ser., 20: 357–364 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wu, L., Zhang, Z. Talagrand’s T2-transportation inequality and log-Sobolev inequality for dissipative SPDEs and applications to reaction-diffusion equations. Chinese Ann. Math. Ser. B, 27: 243–262 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Abramowitz, M., Stegun, I.A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (9th printing). Dover, 1972

    Google Scholar 

  29. Ammari, H., Garapon, P., Kang, H., Lee, H. A algorithm of biological tissues elasticity reconstruction using magnetic resonance elastography measurements. Quar. Appl. Math., 66: 139–175 (2008)

    Article  MATH  Google Scholar 

  30. Ammari, H., Seo, J.K., Zhou, L. Viscoelastic modulus reconstruction using time harmonic vibrations. Math. Model. Anal., 20: 836–851 (2015)

    Article  MathSciNet  Google Scholar 

  31. Ammari, H., Waters, A., Zhang, H. Stability analysis for magnetic resonance elastography. Journal of Mathematical Analysis and Applications, 430: 919–931 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Bal, G., Uhlmann, G. Reconstruction of coefficients in scalar second-order elliptic equations from knowledge of their solutions. Comm. Pure Appl. Math., 66: 1629–1652 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. Grisvard, P. Elliptic problems in nonsmooth domains. Pitman Publishing INC, London, 1985

    MATH  Google Scholar 

  34. Hanke, M. A regularizing Levenberg-Marquardt scheme, with applications to inverse groundwater filtration problems. Inverse Problem, 13: 79–95 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  35. Hastings, W. Monte Carlo Algorithm algorithms using Markov chains and their application. Biometrika, 57: 97–109 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  36. Higashimori, N. Identification of viscoelastic properties by magnetic resonance elastography. J. Phys. Conf. Ser., 73: 012009 (2007)

    Article  Google Scholar 

  37. Honda, N., McLaughin, J., Nakamura, G. Conditional stability for a single interior measurement. Inverse Problems, 30: 055001 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  38. Houten, Van E., Paulsen, K., Miga, M., Kennedy, F., Weaver, J. An overlapping subzone technique for MR-based elastic property reconstruction. Magn. Reson. Med., 42: 779–786 (1999)

    Article  Google Scholar 

  39. Jiang, Y., Fujiwara, H., Nakamura, G. Approximate steady state models for magnetic resonance elastog-raphy. SIAM J. Appl. Math., 71: 1965–1989 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  40. Jiang, Y., Nakamura, G. Viscoelastic properties of soft tissues in a living body measured by MR elastography, J. Phys.: Conf. Ser., 290: 012006 (2010)

    Google Scholar 

  41. Jiang, Y., Nakamura, G. Convergence of Levenberg- Marquardt algorithm for the inverse problem with an interior measurement, Journal of Inverse and Ill-posed Problems, 27: 195–215 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  42. Kaltenbacher, B., Neubauer, A., Scherzer, O. Iterative regularization algorithms for nonlinear ill-posed problems. Walter de Gruyter GmbH & Co. KG, 2008

    Google Scholar 

  43. Kaipio, J., Somersalo, E. Statistical and Computational Inverse Problems. Springer, Berlin, 2005

    MATH  Google Scholar 

  44. Kwon, O.I., Park, C., Nam, H.S., Woo, E.J., Glaser, K.L., Seo, J.K., Manduca, A., Ehman, R.L. Shear modulus decomposition algorithm in magnetic resonance elastography. IEEE Transaction on Medical Imaging, 28: 1526–1533 (2009)

    Article  Google Scholar 

  45. Manduca, A., Oliphant, T.E., Dresner, M.A., Mahowald, J.L., Kruse, S.A., Amromin, E., Felmlee, J.F., Greenleaf, J.F., Ehman, R.L. Magnetic resonance elastography: noninvasive mapping of tissue elasticity. Med. Image Anal., 5: 237–254 (2003)

    Article  Google Scholar 

  46. Lin, K., McLaughlin, J., Zhang, N. Log-elastographic and non-marching full inversion schemes for shear modulus recovery from single frequency elastographic data. Inverse Problems, 25: 075004 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  47. Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., Teller, E. Equations of state calculations by fast computing machines, J. Chem. Phys., 21: 1087–1092 (1953)

    Article  MATH  Google Scholar 

  48. Mizohata, S. The theory of partial differential equations. Cambridge University Press, Cambridge, 1973

    MATH  Google Scholar 

  49. Muthupillai, R., Lomas, D. J., Rossman, R.J., Greenlead, J.F., Manduca, A., Ehman, R.L. Magnetic resonance elastography by direct visualization of propagating acoustic strain waves. Science, 269: 1854–1857 (1995)

    Article  Google Scholar 

  50. Nakamura, G., Jiang, Y., Nagayasu, S., Cheng, J. Inversion analysis for magnetic resonance elastography. Applicable Analysis, 87: 165–179 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  51. Nakamura, G., Potthast, R. Inverse Modeling. IOP Publishing, London, 2015

    MATH  Google Scholar 

  52. Neal, M. Slice Algorithm. The Annals of Statistics, 31: 705–767 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  53. Suzuki, H., Tadano, S., Goto, M., Yamada, S., Fujisaki, K., Kajiwara, I., Suga, M., Nakamura, G. Vis-coelastic Modulus of Agarose Gels by Magnetic Resonance Elastography using Micro-MRI. Mechanical Engineering Journal, 2: 14–00417 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng-yu Wang.

Additional information

This paper is supported by National Natural Science Foundation of China (11671372, 11771326, 11831014).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Fy., Zhang, Ts. Talagrand Inequality on Free Path Space and Application to Stochastic Reaction Diffusion Equations. Acta Math. Appl. Sin. Engl. Ser. 36, 253–261 (2020). https://doi.org/10.1007/s10255-020-0926-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10255-020-0926-3

Keywords

2000 MR Subject Classification

Navigation