Skip to main content
Log in

Evolution of precipitates in Ni–Co–Cr–W–Mo superalloys with different tungsten contents

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The Ni–Co–Cr–W–Mo system is critical for the design of nickel-based superalloys. This system stabilizes different topologically close-packed (TCP) phases in many commercially superalloys with high W and Mo contents. Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and thermodynamic calculations were applied to investigate the thermodynamics of the precipitates in two different W-contained Ni–Co–Cr–W–Mo superalloys (Alloy 1 and Alloy 2). Computational thermodynamics verifies the experimental observation of the μ phase formation as a function of temperature and alloy chemistry, but the kinetics for the precipitation of the M6C phase do not agree with the experimental findings. The major precipitates of Alloy 1 at temperatures of 700 °C and 750 °C during long-time exposure are M23C6, γ′ phase and MC; for Alloy 2, they are M23C6, γ′ phase, MC, M6C and μ phase. W addition is found to promote the precipitation of M6C and μ phase during exposure. M6C has higher W and lower Ni content than μ phase, whereas M6C is an unstable phase that would transform into M12C after 5000-h exposure at 750 °C. A great quantity of needle-like μ phases precipitated after exposure at 750 °C for 5000 h, which have no effect on the impact properties of Alloy 2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Jablonski PD, Hawk JA, Cowen CJ, Maziasz PJ. Processing of advancedcast alloys for A-USC steam turbine applications. JOM. 2012;64:271.

    Article  CAS  Google Scholar 

  2. Liu ZD, Heng SC, Tang GB, Bao HS, Yang G, Gan Y. The state-of-the-art of steel technology used for Chinese power plants and its future. Iron Steel. 2011;46(3):1.

    Google Scholar 

  3. Agarwal DC, Gehrmann B. Nickel alloys for high efficiency fossil power plants. In: The 5th International Conference in Materials Technology for Fossil Power Plants. Florida. 2007. 271.

  4. Fukuda Y. Development of advanced ultra supercritical fossil power plants in Japan: materials and high temperature corrosion properties. Mater Sci Forum. 2011;696:236.

    Article  CAS  Google Scholar 

  5. Ma LT, Wang LM. Hot deformation behavior of F6NM stainless steel. Int J Iron Steel Res. 2014;21(11):1035.

    Article  CAS  Google Scholar 

  6. Yamamoto R, Kadoya Y, Nakano T. Development of Ni-based superalloy for advanced 700 °C-class steam turbines. In: Proceedings from the Fifth International Conference on Advances in Materials Technology for Fossil Power Plant, Florida, 2007.434.

  7. Bugge J, Kjær S, Blum R. High-efficiency coal-fired power plants development and perspectives. Energy. 2006;31(10):1437.

    Article  CAS  Google Scholar 

  8. Gong ZH, Yang G, Ma LT, Wang L. Precipitation phases and mechanical properties of GY200 Ni-based alloy for blade with W and Mo addition. Chin J Rare Met. 2018;42(3):246.

    Google Scholar 

  9. Abe F. Research and development of heat-resistant materials for advanced USC power plants with steam temperatures of 700 °C and above. Engineering. 2015;1(2):211.

    Article  CAS  Google Scholar 

  10. Kuramochi T. Review of energy and climate policy developments in Japan before and after Fukushima. Renew Sustain Energy Rev. 2015;43:1320.

    Article  Google Scholar 

  11. Shao WW, Zhang B, Liu Y, Liu CS, Tan P, Shang S, Zhang GP. Effect of laser power on porosity and mechanical properties of GH4169 fabricated by laser melting deposition. Tungsten. 2019;1(4):297.

    Article  Google Scholar 

  12. Abe F, Kutsumi H, Haruyama H, Okubo H. Improvement of oxidation resistance of 9 mass% chromium steel for advanced-ultra supercritical power plant boilers by pre-oxidation treatment. Corros Sci. 2017;114:1.

    Article  CAS  Google Scholar 

  13. Zheng L, Xiao CB, Zhang GQ. Brittle fracture of gas turbine blade caused by the formation of primary β-NiAl phase in Ni-base superalloy. Eng Fail Anal. 2012;26:318.

    Article  CAS  Google Scholar 

  14. Kim IS, Choi BG, Hong HU, Do J, Jo CY. Influence of thermal exposure on the microstructural evolution and mechanical properties of a wrought Ni-base superalloy. Mater Sci Eng A. 2014;593:55.

    Article  CAS  Google Scholar 

  15. Pyczak F, Neumeier S, Göken M. Temperature dependence of element partitioning in rhenium and ruthenium bearing nickel-base superalloys. Mater Sci Eng A. 2010;527:7939.

    Article  Google Scholar 

  16. Popp R, Haas S, Scherm F, Redermeier A, Povoden-Karadeniz E, Göhler T, Glatzel U. Determination of solubility limits of refractory elements in TCP phases of the Ni–Mo–Cr ternary system using diffusion multiples. J Alloys Compd. 2019;788:67.

    Article  CAS  Google Scholar 

  17. Hobbs RA, Zhang L, Rae CMF, Tin S. Mechanisms of topologically close-packed phase suppression in an experimental ruthenium-bearing single-crystal nickel-base superalloy at 1100 °C. Metall Mater Trans A. 2008;39A:1014.

    Article  CAS  Google Scholar 

  18. Belan J. GCP and TCP phases presented in nickel-base superalloys. Mater Today Proc. 2016;3(4):936.

    Article  Google Scholar 

  19. Zhao JC, Ravikumar V, Beltran AM. Phase precipitation and phase stability in Nimonic 263. Metall Mater Trans A. 2001;32(6):1271.

    Article  Google Scholar 

  20. Huo J, Shi Q, Zheng Y, Feng Q. Microstructural characteristics of σ phase and P phase in Ru-containing single crystal superalloys. Mater Char. 2017;124:73.

    Article  CAS  Google Scholar 

  21. Mao P, Xin Y, Han K, Jiang W. Effects of heat treatment and Re-content on the TCP-phase in two Ni–Mo–Cr–Re superalloys. Acta Metall Sin. 2009;22(5):365.

    Article  CAS  Google Scholar 

  22. Rettig R, Heckl A, Singer RF. Modeling of precipitation kinetics of TCP-phases in single crystal nickel-base superalloys. Adv Mater Res. 2011;278:180.

    Article  CAS  Google Scholar 

  23. Park CJ, Ahn MK, Kwon HS. Influences of Mo substitution by W on the precipitation kinetics of secondary phases and the associated localized corrosion and embrittlement in 29% Cr ferritic stainless steels. Mater Sci Eng A. 2006;418(1–2):211.

    Article  Google Scholar 

  24. Wang L, Yang G, Liu ZD, Wang L, Ma LT, Yang ZQ. Effects of long-term aging on microstructure and mechanical properties of a nickel-base alloy. Rare Met Mater Eng (Chines). 2018;47(3):961.

    Google Scholar 

  25. Viswanathan GB, Shi R, Genc A, Vorontsov VA, Kovarik L, Rae CMF, Mills MJ. Segregation at stacking faults within the γ′ phase of two Ni-base superalloys following intermediate temperature creep. Scripta Materialia. 2015;94:5.

    Article  CAS  Google Scholar 

  26. Fleischmann E, Miller MK, Affeldt E, Glatzel U. Quantitative experimental determination of the solid solution hardening potential of rhenium, tungsten and molybdenum in single-crystal nickel-based superalloys. Acta Mater. 2015;87:350.

    Article  CAS  Google Scholar 

  27. Li HF, Ye F, Zhao J, Cao TS, Xu FH, Xu QS, Wang Y, Cheng CQ, Min XH. Grain boundary migration-induced directional coarsening of the γ′ phase in advanced ultra-supercritical superalloy. Mater Sci Eng A. 2018;714:172.

    Article  CAS  Google Scholar 

  28. Idell Y, Levine LE, Allen AJ, Zhang F, Campbell CE, Olson GB, Gong J, Deutchman HZ. Unexpected δ-phase formation in additive-manufactured Ni-based superalloy. JOM. 2016;68(3):950.

    Article  CAS  Google Scholar 

  29. Chen Z, Brooks JW, Loretto MH. Precipitation in Incoloy alloy 909. Mater Sci Technol. 1993;9(8):647.

    Article  CAS  Google Scholar 

  30. Kermanpur A, Varahraam N, Engilehei E, Mohammadzadeh M, Davami P. Directional solidification of Ni base superalloy IN738LC to improve creep properties. Mater Sci Technol. 2000;16:579.

    Article  CAS  Google Scholar 

  31. Reed RC, Jackson MP, Na YS. Characterization and modeling of the precipitation of the sigma phase in UDIMET 720 and UDIMET 720LI. Metall Mater Trans A. 1999;30:521.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Key Research and Develop Program, China (No. 2017YFB0305203).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han-Sheng Bao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, HS., Gong, ZH., Chen, ZZ. et al. Evolution of precipitates in Ni–Co–Cr–W–Mo superalloys with different tungsten contents. Rare Met. 39, 716–724 (2020). https://doi.org/10.1007/s12598-020-01400-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01400-w

Keywords

Navigation