Skip to main content
Log in

Assessment of proliferation, migration and differentiation potentials of bone marrow mesenchymal stem cells labeling with silica-coated and amine-modified superparamagnetic iron oxide nanoparticles

  • Original Article
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Superparamagnetic iron oxide nanoparticles have been widely used for cell labeling in preclinical and clinical studies, to improve labeling efficiency, particle conjugation and surface modifications are developed, but some modified SPIONs exert side-effect on physiological activity of cells, which cannot be served as ideal cell tracker. In this study, amine-modified silica-coated SPIO (SPIO@SiO2-NH2, SPIO@S-N) nanoparticles were used to label bone marrow derived mesenchymal stem cells (BM-MSCs), then the stem cell potentials were evaluated. It was found BM-MSCs could be efficiently labeled by SPIO@S-N nanoparticles. After labeling, the BM-MSCs viability kept well and the migration ability increased, but the osteogenesis and adipogenesis potentials were not impaired. In steroid associated osteonecrosis (SAON) bone defect model, stem cell implantation was performed by injection of SPIO@S-N labeled BM-MSCs into marrow cavity locally, it was found the SPIO positive cells homed to the periphery of defect region in control group, but were recruited to the defect region in poly lactic-coglycolic acid/tricalcium phosphate (PLGA/TCP) scaffold implantation group. In conclusion, SPIO@S-N nanoparticles promoted migration while retained proliferation and differentiation ability of BM-MSCs, implying this kind of nanoparticles could be served not only an ideal tracking marker but also an accelerator for stem cell homing during tissue repair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andreas K, Georgieva R, Ladwig M, Mueller S, Notter M, Sittinger M, Ringe J (2012) Highly efficient magnetic stem cell labeling with citrate-coated superparamagnetic iron oxide nanoparticles for MRI tracking. Biomaterials 33:4515–4525

    CAS  PubMed  Google Scholar 

  • Askari AT et al (2003) Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet 362:697–703

    CAS  PubMed  Google Scholar 

  • Bulte JW et al (2001) Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells. Nat Biotechnol 19:1141–1147

    CAS  PubMed  Google Scholar 

  • Chang YK, Liu YP, Ho JH, Hsu SC, Lee OK (2012) Amine-surface-modified superparamagnetic iron oxide nanoparticles interfere with differentiation of human mesenchymal stem cells. J Orthop Res 30:1499–1506

    CAS  PubMed  Google Scholar 

  • Chen YC et al (2010) The inhibitory effect of superparamagnetic iron oxide nanoparticle (Ferucarbotran) on osteogenic differentiation and its signaling mechanism in human mesenchymal stem cells. Toxicol Appl Pharmacol 245:272–279

    CAS  PubMed  Google Scholar 

  • Coyne DW (2009) Ferumoxytol for treatment of iron deficiency anemia in patients with chronic kidney disease. Expert Opin Pharmacother 10:2563–2568

    CAS  PubMed  Google Scholar 

  • De Becker A, Riet IV (2016) Homing and migration of mesenchymal stromal cells: how to improve the efficacy of cell therapy? World J Stem Cells 8:73–87

    PubMed  PubMed Central  Google Scholar 

  • Elstner A, Holtkamp N, von Deimling A (2007) Involvement of Hif-1 in desferrioxamine-induced invasion of glioblastoma cells. Clin Exp Metastasis 24:57–66

    CAS  PubMed  Google Scholar 

  • Fox JM, Chamberlain G, Ashton BA, Middleton J (2007) Recent advances into the understanding of mesenchymal stem cell trafficking. Br J Haematol 137:491–502

    CAS  PubMed  Google Scholar 

  • Gu L, Li X, Jiang J, Guo G, Wu H, Wu M, Zhu H (2018) Stem cell tracking using effective self-assembled peptide-modified superparamagnetic nanoparticles. Nanoscale

  • Guzman R et al (2007) Long-term monitoring of transplanted human neural stem cells in developmental and pathological contexts with MRI. Proc Natl Acad Sci USA 104:10211–10216

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hauger O et al (2006) MR evaluation of the glomerular homing of magnetically labeled mesenchymal stem cells in a rat model of nephropathy. Radiology 238:200–210

    PubMed  Google Scholar 

  • Howe AK (2011) Cross-talk between calcium and protein kinase A in the regulation of cell migration. Curr Opin Cell Biol 23:554–561

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang DM et al (2009) The promotion of human mesenchymal stem cell proliferation by superparamagnetic iron oxide nanoparticles. Biomaterials 30:3645–3651

    CAS  PubMed  Google Scholar 

  • Hunter AC (2006) Molecular hurdles in polyfectin design and mechanistic background to polycation induced cytotoxicity. Adv Drug Deliv Rev 58:1523–1531. https://doi.org/10.1016/j.addr.2006.09.008

    Article  CAS  PubMed  Google Scholar 

  • Jasmin GTDS, Louzada RA, Rosado-de-Castro PH, Mendez-Otero R, de Carvalho ACC (2017) Tracking stem cells with superparamagnetic iron oxide nanoparticles: perspectives and considerations. Int J Nanomedicine 12:779–793

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jin R, Lin B, Li D, Ai H (2014) Superparamagnetic iron oxide nanoparticles for MR imaging and therapy: design considerations and clinical applications. Curr Opin Pharmacol 18:18–27

    CAS  PubMed  Google Scholar 

  • Ju S, Teng G, Zhang Y, Ma M, Chen F, Ni Y (2006) In vitro labeling and MRI of mesenchymal stem cells from human umbilical cord blood. Magn Reson Imaging 24:611–617

    PubMed  Google Scholar 

  • Kalber TL et al (2016) Hyperthermia treatment of tumors by mesenchymal stem cell-delivered superparamagnetic iron oxide nanoparticles. Int J Nanomedicine 11:1973–1983

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim HS, Oh SY, Joo HJ, Son KR, Song IC, Moon WK (2010) The effects of clinically used MRI contrast agents on the biological properties of human mesenchymal stem cells. NMR Biomed 23:514–522

    CAS  PubMed  Google Scholar 

  • Kim SJ, Lewis B, Steiner MS, Bissa UV, Dose C, Frank JA (2016) Superparamagnetic iron oxide nanoparticles for direct labeling of stem cells and in vivo MRI tracking. Contrast Media Mol Imaging 11:55–64

    CAS  PubMed  Google Scholar 

  • Kostura L, Kraitchman DL, Mackay AM, Pittenger MF, Bulte JW (2004) Feridex labeling of mesenchymal stem cells inhibits chondrogenesis but not adipogenesis or osteogenesis. NMR Biomed 17:513–517

    PubMed  Google Scholar 

  • Krahling H, Mally S, Eble JA, Noel J, Schwab A, Stock C (2009) The glycocalyx maintains a cell surface pH nanoenvironment crucial for integrin-mediated migration of human melanoma cells. Pflugers Arch 458:1069–1083

    PubMed  Google Scholar 

  • Lei H et al (2015) Stem cell labeling with superparamagnetic iron oxide nanoparticles using focused ultrasound and magnetic resonance imaging tracking. J Nanosci Nanotechnol 15:2605–2612

    CAS  PubMed  Google Scholar 

  • Leibacher J, Henschler R (2016) Biodistribution, migration and homing of systemically applied mesenchymal stem/stromal cells. Stem Cell Res Ther 7:7

    PubMed  PubMed Central  Google Scholar 

  • Lewin M, Carlesso N, Tung CH, Tang XW, Cory D, Scadden DT, Weissleder R (2000) Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat Biotechnol 18:410–414

    CAS  PubMed  Google Scholar 

  • Mahmoudi M, Simchi A, Milani AS, Stroeve P (2009) Cell toxicity of superparamagnetic iron oxide nanoparticles. J Colloid Interface Sci 336:510–518

    CAS  PubMed  Google Scholar 

  • Matthay MA, Pati S, Lee JW (2017) Concise review: mesenchymal stem (stromal) cells: biology and preclinical evidence for therapeutic potential for organ dysfunction following trauma or sepsis. Stem Cells 35:316–324

    PubMed  Google Scholar 

  • Pittenger MF et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    CAS  PubMed  Google Scholar 

  • Qin L et al (2006) Multiple bioimaging modalities in evaluation of an experimental osteonecrosis induced by a combination of lipopolysaccharide and methylprednisolone. Bone 39:863–871

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qin L et al (2015) Phytomolecule icaritin incorporated PLGA/TCP scaffold for steroid-associated osteonecrosis: proof-of-concept for prevention of hip joint collapse in bipedal emus and mechanistic study in quadrupedal rabbits. Biomaterials 59:125–143

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raheja LF, Genetos DC, Wong A, Yellowley CE (2011) Hypoxic regulation of mesenchymal stem cell migration: the role of RhoA and HIF-1alpha. Cell Biol Int 35:981–989

    CAS  PubMed  Google Scholar 

  • Schafer R et al (2009) Labeling of human mesenchymal stromal cells with superparamagnetic iron oxide leads to a decrease in migration capacity and colony formation ability. Cytotherapy 11:68–78

    PubMed  Google Scholar 

  • Smart N, Riley PR (2008) The stem cell movement. Circ Res 102:1155–1168

    CAS  PubMed  Google Scholar 

  • Stuwe L et al (2007) pH dependence of melanoma cell migration: protons extruded by NHE1 dominate protons of the bulk solution. J Physiol 585:351–360

    PubMed  PubMed Central  Google Scholar 

  • Sykova E, Jendelova P (2007) Migration, fate and in vivo imaging of adult stem cells in the CNS. Cell Death Differ 14:1336–1342

    CAS  PubMed  Google Scholar 

  • Torres ALM, Jelicks L, de Carvalho AC, Spray DC, Mendez-Otero R (2012) Labeling stem cells with superparamagnetic iron oxide nanoparticles: analysis of the labeling efficacy by microscopy and magnetic resonance imaging. Methods Mol Biol 906:239–252

    PubMed  PubMed Central  Google Scholar 

  • Vora P et al (2012) CXCL1 regulation of oligodendrocyte progenitor cell migration is independent of calcium signaling. Exp Neurol 236:259–267

    CAS  PubMed  Google Scholar 

  • Wang HH et al (2009) Durable mesenchymal stem cell labelling by using polyhedral superparamagnetic iron oxide nanoparticles. Chemistry 15:12417–12425

    CAS  PubMed  Google Scholar 

  • Wang YX et al (2010) Low-intensity pulsed ultrasound increases cellular uptake of superparamagnetic iron oxide nanomaterial: results from human osteosarcoma cell line U2OS. J Magn Reson Imaging 31:1508–1513. https://doi.org/10.1002/jmri.22173

    Article  PubMed  Google Scholar 

  • Wang C et al (2015) Application of bone marrow mesenchymal stem cells to the treatment of osteonecrosis of the femoral head. Int J Clin Exp Med 8:3127–3135

    PubMed  PubMed Central  Google Scholar 

  • Wang Q et al (2016) Response of MAPK pathway to iron oxide nanoparticles in vitro treatment promotes osteogenic differentiation of hBMSCs. Biomaterials 86:11–20

    CAS  PubMed  Google Scholar 

  • Wei C, Wang X, Chen M, Ouyang K, Song LS, Cheng H (2009) Calcium flickers steer cell migration. Nature 457:901–905

    CAS  PubMed  Google Scholar 

  • Xi J, Yan X, Zhou J, Yue W, Pei X (2013) Mesenchymal stem cells in tissue repairing and regeneration: progress and future. Burns Trauma 1:13–20

    PubMed  Google Scholar 

  • Xie XH et al (2010) Structural and degradation characteristics of an innovative porous PLGA/TCP scaffold incorporated with bioactive molecular icaritin. Biomed Mater 5:054109

    PubMed  Google Scholar 

  • Xie XH, Wang XL, Yang HL, Zhao DW, Qin L (2015) Steroid-associated osteonecrosis: epidemiology, pathophysiology, animal model, prevention, and potential treatments (an overview). J Orthop Translat 3:58–70

    PubMed  PubMed Central  Google Scholar 

  • Yao D et al (2012) Icaritin, an exogenous phytomolecule, enhances osteogenesis but not angiogenesis—an in vitro efficacy study. PLoS ONE 7:e41264

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yarrow JC, Perlman ZE, Westwood NJ, Mitchison TJ (2004) A high-throughput cell migration assay using scratch wound healing, a comparison of image-based readout methods. BMC Biotechnol 4:21

    PubMed  PubMed Central  Google Scholar 

  • Zhao JW, Gao ZL, Mei H, Li YL, Wang Y (2011) Differentiation of human mesenchymal stem cells: the potential mechanism for estrogen-induced preferential osteoblast versus adipocyte differentiation. Am J Med Sci 341:460–468

    PubMed  Google Scholar 

  • Zhao L, Kaye AD, Kaye AJ, Abd-Elsayed A (2018) Stem cell therapy for osteonecrosis of the femoral head: current trends and comprehensive review. Curr Pain Headache Rep 22:41

    PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (81560005 and 81760007), Natural Science Foundation of Guangxi province (2016GXNSFBA380003 and 2018GXNSFAA138052).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dong Yao or Bi-wen Mo.

Ethics declarations

Conflict of interest

The authors have no financial conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, D., Liu, Nn. & Mo, Bw. Assessment of proliferation, migration and differentiation potentials of bone marrow mesenchymal stem cells labeling with silica-coated and amine-modified superparamagnetic iron oxide nanoparticles. Cytotechnology 72, 513–525 (2020). https://doi.org/10.1007/s10616-020-00397-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-020-00397-5

Keywords

Navigation