Skip to main content
Log in

Parametric effect in a superradiant laser with self-mode-locking

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

Based on numerical simulation of the nonstationary working of a CW superradiant laser with a low-Q combined Fabry-Perot cavity with distributed feedback of waves, we describe a parametric mechanism of self-mode-locking caused by beats of two superradiant modes with a period half that of the cavity round-trip period and supporting the formation of a soliton of the electromagnetic field inside the cavity without using any additional mode-locking technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ya. I. Khanin, Fundamentals of Laser Dynamics [in Russian], Nauka, Moscow (1999); English transl., Cambridge Internat. Sci. Publ., Cambridge (2006).

    Google Scholar 

  2. H. A. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electr.6, 1173–1185 (2000).

    Article  ADS  Google Scholar 

  3. R. M. Arkhipov, A. Pimenov, M. Radziunas, D. Rachinskii, A. G. Vladimirov, D. Arsenijevic, H. Schmeckebier, and D. Bimberg, “Hybrid mode locking in semiconductor lasers: Simulations, analysis, and experiments,” IEEE J. Sel. Top. Quantum Electon.19, 1100208 (2013).

    Article  ADS  Google Scholar 

  4. S. K. Turitsyn, N. N. Rosanov, I. A. Yarutkina, A. E. Bednyakova, S. V. Fedorov, O. V. Shtyrina, and M. P. Fedoruk, “Dissipative solitons in fiber lasers,” Phys. Usp.59, 642–668 (2016).

    Article  ADS  Google Scholar 

  5. V. V. Kozlov, “Self-induced transparency soliton laser via coherent mode locking,” Phys. Rev. A56, 1607–1612 (1997).

    Article  ADS  Google Scholar 

  6. M. A. Talukder and C. R. Menyuk, “Analytical and computational study of self-induced transparency mode locking in quantum cascade lasers,” Phys. Rev. A79, 063841 (2009).

    Article  ADS  Google Scholar 

  7. V. V. Kozlov and N. N. Rosanov, “Single-cycle-pulse passively-mode-locked laser with inhomogeneously broadened active medium,” Phys. Rev. A87, 043836 (2013).

    Article  ADS  Google Scholar 

  8. R. M. Arkhipov, M. V. Arkhipov, and I. V. Babushkin, “On coherent mode-locking in a two-section laser,” JETP Lett.101, 149–153 (2015).

    Article  ADS  Google Scholar 

  9. R. M. Arkhipov, M. V. Arkhipov, I. V. Babushkin, and N. N. Rosanov, “Self-induced transparency mode locking, and area theorem,” Opt. Lett.41, 737–740 (2016); arXiv:1512.07648v1 [physics.optics] (2015).

    Article  ADS  Google Scholar 

  10. M. V. Arkhipov, R. M. Arkhipov, A. A. Shimko, I. V. Babushkin, and N. N. Rosanov, “Mode locking in a Ti:sapphire laser by means of a coherent absorber,” JETP Lett.109, 634–637 (2019).

    Article  ADS  Google Scholar 

  11. Vl. V. Kocharovsky, V. V. Zheleznyakov, E. R. Kocharovskaya, and V. V. Kocharovsky, “Superradiance: The principles of generation and implementation in lasers,” Phys. Usp.60, 345–384 (2017).

    Article  ADS  Google Scholar 

  12. E. R. Kocharovskaya, A. S. Gavrilov, V. V. Kocharovsky, E. M. Loskutov, A. V. Mishin, D. N. Mukhin, A. F. Seleznev, and Vl. V. Kocharovsky, “Spectral-dynamical peculiarities of polarization of the active medium and spatio-temporal empirical modes of a laser with a low-Q cavity,” Radiophys. Quantum Electr.61, 806–833 (2018).

    Article  Google Scholar 

  13. L. Allen and J. Eberly, Optical Resonance and Two-Level Atoms, Wiley, New York (1975).

    Google Scholar 

  14. R. H. Pantell and H. E. Puthoff, Fundamentals of Quantum Electronics, Wiley, New York (1969).

    Google Scholar 

  15. A. A. Belyanin, V. V. Kocharovsky, and Vl. V. Kocharovsky, “Collective QED processes of electron-hole recombination and electron-positron annihilation in a strong magnetic field,” Quantum Semiclas. Opt.9, 1–44 (1997).

    Article  ADS  Google Scholar 

  16. Vl. V. Kocharovsky, A. A. Belyanin, E. R. Kocharovskaya, and V. V. Kocharovsky, “Superradiant lasing and collective dynamics of active centers with polarization lifetime exceeding photon lifetime,” in: Advanced Lasers: Laser Physics and Technology for Applied and Fundamental Science (Springer Series Opt. Sci., Vol. 193, O. Shulika and I. Sukhoivanov. eds.), Springer, Dordrecht (2015), pp. 49–69.

    Chapter  Google Scholar 

  17. Vl. V. Kocharovsky, M. A. Garasyov, P. A. Kalinin, and E. R. Kocharovskaya, “Prospects of creating a superradiant heterolaser [in Russian],” in: Works of II Symposium on Coherent Optical Radiation of Semiconductor Compounds and Structures (Zvenigorod, 16–18 November 2009), Vol. 2, Phys. Inst., Russ. Acad. Sci., Moscow (2010), pp. 68–77.

    Google Scholar 

  18. I. L. Krestikov, N. N Ledentsov, A. Hoffmann, and D. Bimberg, “Arrays of two-dimensional islands formed by submonolayer insertions: Growth, properties, devices,” Phys. Stat. Sol. (a), 183, 207–233 (2001).

    Article  ADS  Google Scholar 

  19. P. Qiao, C.-Y. Lu, D. Bimberg, and S. L. Chuang, “Theory and experiment of submonolayer quantum-dot metal-cavity surface-emitting microlasers,” Opt. Express21, 30336–30349 (2013).

    Article  ADS  Google Scholar 

  20. E. R. Kocharovskaya, N. S. Ginzburg, and A. S. Sergeev, “Collective spontaneous emission in a distributed feedback laser with an inhomogeneously broadened active medium,” Bull. Russ. Acad. Sci. Phys.74, 904–907 (2010).

    Article  Google Scholar 

  21. K. Cong, Q. Zhang, Y. Wang, G. T. Noe, A. A. Belyanin, and J. Kono, “Dicke superradiance in solids,” J. Opt. Soc. Am. B33, C80–C101 (2016).

    Article  Google Scholar 

  22. A. M. Nadtochiy, S. A. Mintairov, N. A. Kalyuzhnyy, S. S. Rouvimov, V. N. Nevedomskii, M. V. Maximov, and A. E. Zhukov, “Bimodality in arrays of In0.4Ga0.6As hybrid quantum-confined heterostructures grown on GaAs substrates,” Semiconductors52, 53–58 (2018).

    Article  ADS  Google Scholar 

  23. V. V. Kocharovsky, Vl. V. Kocharovsky, and V. A. Kukushkin, “Spontaneous polarization of a gas of two-level molecules and the Gibbs quasi-energy distribution,” Radiophys. Quantum Electr.44, 161–175 (2001).

    Article  Google Scholar 

  24. E. R. Kocharovskaya, A. S. Gavrilov, V. V. Kocharovsky, E. M. Loskutov, D. N. Mukhin, A. M. Feigin, and Vl. V. Kocharovsky, “Empirical mode with a variable spatial-temporal structure and the dynamics of superradiant lasers,” J. Phys.: Conf. Ser.740, 012007 (2016).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vl. V. Kocharovsky, A. V. Mishin, A. F. Seleznev, E. R. Kocharovskaya or V. V. Kocharovsky.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

This research was supported by the Presidium of the Russian Academy of Sciences (fundamental research program “Nanostructures: Physics, Chemistry, Biology, Basic Technology,” Secs. 1–4) and the Russian Foundation for Basic Research (Grant No. 20-02-00872, Secs. 5 and 6).

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 203, No. 1, pp. 56–77, April, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kocharovsky, V.V., Mishin, A.V., Seleznev, A.F. et al. Parametric effect in a superradiant laser with self-mode-locking. Theor Math Phys 203, 483–500 (2020). https://doi.org/10.1134/S0040577920040054

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577920040054

Keywords

Navigation