Skip to main content
Log in

Topological transformations of three-dimensional dissipative solitons in the framework of the generalized Ginzburg—Landau equation

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We classify and analyze transformations of three-dimensional dissipative tangle-solitons, i.e., solitons with closed and nonclosed vortex lines, under smooth variations of the system parameters. An example of such a system is a laser medium with fast saturable absorption. We find several scenarios of both reversible and irreversible transformations and discuss the role of the dissipative property of the system (openness) in specific features of these phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. D. Faddeev, “Quantization of solitons,” Preprint No. IAS-75-QS70, Institute for Advanced Study, Princeton, N. J. (1975).

    Google Scholar 

  2. L. D. Faddeev, “Einstein and several contemporary tendencies in the field theory of elementary particles,” in: Relativity, Quanta, and Cosmology in the Development of the Scientific Thought of Albert Einstein (M. Pantaleo and F. de Finis, eds.), Vol. 1, Johnson Repr. Corp., New York (1979), pp. 247–266.

    Google Scholar 

  3. L. D. Faddeev and A. J. Niemi, “Stable knot-like structures in classical field theory,” Nature387, 58–61; arXiv:hep-th/9610193v1 (1996).

    Article  ADS  Google Scholar 

  4. L. D. Faddeev and A. J. Niemi, “Magnetic geometry and the confinement of electrically conducting plasmas,” Phys. Rev. Lett.85, 3416–3419 (2000); arXiv:physics/0003083v1 (2000).

    Article  ADS  Google Scholar 

  5. E. Babaev, “Dual neutral variables and knot solitons in triplet superconductors,” Phys. Rev. Lett.88, 177002 (2002); arXiv:cond-mat/0106360v3 (2001).

    Article  ADS  Google Scholar 

  6. J. Garaud, J. Carlström, and E. Babaev, “Topological solitons in three-band superconductors with broken time reversal symmetry,” Phys. Rev. Lett.107, 197001 (2011); arXiv:1107.0995v3 [cond-mat.supr-con] (2011).

    Article  ADS  Google Scholar 

  7. D. Proment, M. Onorato, and C. F. Barenghi, “Vortex knots in a Bose-Einstein condensate,” Phys. Rev. E85, 036306 (2012); arXiv:1110.5757v1 [physics.flu-dyn] (2011).

    Article  ADS  Google Scholar 

  8. D. Proment, M. Onorato, and C. F. Barenghi, “Torus quantum vortex knots in the Gross-Pitaevskii model for Bose-Einstein condensates,” J. Phys.: Conf. Ser.544, 012022 (2014).

    Google Scholar 

  9. N. A. Veretenov, N. N. Rosanov, and S. V. Fedorov, “Rotating and precessing dissipative-optical-topological-3D solitons,” Phys. Rev. Lett.117, 183901 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  10. N. A. Veretenov, S. V. Fedorov, and N. N. Rosanov, “Topological vortex and knotted dissipative optical 3D solitons generated by 2D vortex solitons,” Phys. Rev. Lett.119, 263901 (2017).

    Article  ADS  Google Scholar 

  11. S. V. Fedorov, N. A. Veretenov, and N. N. Rosanov, “Irreversible hysteresis of internal structure of tangle dissipative optical solitons,” Phys. Rev. Lett.122, 023903 (2019).

    Article  ADS  Google Scholar 

  12. N. A. Veretenov, S. V. Fedorov, and N. N. Rosanov, “Topological three-dimensional dissipative optical solitons,” Proc. Roy. Soc. London Ser. A, 376, 20170367 (2018).

    ADS  MATH  Google Scholar 

  13. S. V. Fedorov, N. N. Rosanov, and N. A. Veretenov, “Structure of energy fluxes in topological three-dimensional dissipative solitons,” JETP Lett.107, 327–331 (2018).

    Article  ADS  Google Scholar 

  14. N. N. Rosanov, M. V. Arkhipov, R. M. Arkhipov, N. A. Veretenov, A. V. Pakhomov, and S. V. Fedorov, “Extreme and topological nonlinear optics of open systems,” Opt. Spectrosc.127, 77–87 (2019).

    Article  ADS  Google Scholar 

  15. N. N. Rosanov, S. V. Fedorov, and N. A. Veretenov, “Laser solitons in 1D, 2D, and 3D,” Eur. Phys. J. D73, 141 (2019).

    Article  ADS  Google Scholar 

  16. N. N. Rosanov, S. V. Fedorov, L. A. Nesterov, and N. A. Veretenov, “Extreme and topological dissipative solitons with structured matter and structured light,” Nanomaterials9, 826 (2019).

    Article  Google Scholar 

  17. N. N. Rosanov, Dissipative Optical Solitons: From Micro- to Nano- and Atto- [in Russian], Fizmatlit, Moscow (2011).

    Google Scholar 

  18. N. N. Rosanov, “The quasi-optical equation in media with weak absorption,” Optics and Spectroscopy127, 285–287 (2019).

    Article  ADS  Google Scholar 

  19. N. N. Rosanov and S. V. Fedorov, “Diffraction switching waves and autosolitons in a laser with saturable absorption,” Opt. Spectrosc.72, 782–787 (1992).

    ADS  Google Scholar 

  20. A. Kawauchi, A Survey of Knot Theory, Birkhäuser, Basel (1996).

    MATH  Google Scholar 

  21. C. C. Adams, The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots, W. H. Freeman, New York (1994).

    MATH  Google Scholar 

  22. H. K. Moffatt and R. L. Ricca, “Helicity and the Călugăreanu invariant,” Proc. Roy. Soc. London Ser. A439, 411–429 (1992).

    ADS  MathSciNet  MATH  Google Scholar 

  23. A. Villois, D. Proment, and G. Krstulovic, “Universal and nonuniversal aspects of vortex reconnections in superfluids,” Phys. Rev. Fluids2, 044701 (2017); arXiv:1612.00386v2 [physics.flu-dyn] (2016).

    Article  ADS  Google Scholar 

Download references

Acknowledgments

One of the authors (N. N. R.) thanks E. B. Aleksandrov and V. E. Zakharov for the support of this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. N. Rosanov, S. V. Fedorov or N. A. Veretenov.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

This research is supported by a grant from the Russian Science Foundation (Project No. 18-12-00075). The computational resources of the Supercomputer Center “Polytechnical” of Peter the Great St. Petersburg Polytechnical University were used for numerical simulation.

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 203, No. 1, pp. 134–150, April, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosanov, N.N., Fedorov, S.V. & Veretenov, N.A. Topological transformations of three-dimensional dissipative solitons in the framework of the generalized Ginzburg—Landau equation. Theor Math Phys 203, 547–560 (2020). https://doi.org/10.1134/S0040577920040108

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577920040108

Keywords

Navigation