Skip to main content
Log in

Superelasticity and Shape Memory Effect Under Tension and Compression in the [001]-Oriented Single Crystals of Non-Equiatomic FeNiCoAlTi High-Entropy Alloy

  • Published:
Russian Physics Journal Aims and scope

The effect of γ′-phase dispersed particles on the temperature dependence of the stresses of the start of martensitic transformations σcr(T), the shape memory effect, and the superelasticity is investigated depending on aging conditions in the [001]-oriented crystals of the non-equiatomic Fe – 28% Ni – 17% Co – 1.5% Al – 2.5% Ti (at.%) high-entropy alloy under tension/compression. It is shown that σcr(T) during the γ–α′ stressinduced martensitic transformations is independent of the strain method (tension/compression) for small γ′- phase particles with sizes d ≤ 4–6 nm. The value of the reversible strain at tension is 3.5–4.5%, and it is 1.5% at compression. Reasons for strong dependences of the reversible strain and the mechanical hysteresis on the strain method (tension/compression) and particle sizes are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Omori, K. Ando, M. Okano, et al., Science, 333, No. 6038, 68–71 (2011).

    Article  ADS  Google Scholar 

  2. C. Zhang, C. Zhu, T. Harrington, et al., Adv. Eng. Mater., 21, No. 1, 1800941 (4 p) (2019).

  3. J. Ma, B. C. Hornbuckle, I. Karaman, et al., Acta Mater., 61, No. 9, 3445–3455 (2013).

    Article  Google Scholar 

  4. P. Kross, C. Somsen, T. Niendorf, et al., Acta Mater., 79, 126–137 (2014).

    Article  Google Scholar 

  5. T. Omori, S. Abe, Y. Tanaka, et al., Scripta Mater., 69, 812–815 (2013).

    Article  Google Scholar 

  6. Yu. I. Chumlyakov, I. V. Kireeva, V. V. Poklonov, et al., Pis’ma Zh. Tekh. Ziz., 40, No. 17, 47–53 (2014).

    Google Scholar 

  7. D. Lee and R. Kainuma, J. Alloy Compd., 617, 120–123 (2014).

    Article  Google Scholar 

  8. V. V. Kokorin, Martensitic Transformations in Inhomogeneous Solid Solutions [in Russian], Naukova Dumka, Kiev (1987).

  9. Y. Geng, D. Lee, X. Xu, et al., J. Alloy Compd., 628, 287–292 (2015).

    Article  Google Scholar 

  10. H. Sehitoglu, C. Efstathion, H. J. Maier, and Y. Chumlyakov, Mech. Mater., 38, 538–550 (2006).

    Article  Google Scholar 

  11. H. Sehitoglu, X. Y. Zhang, T. Kotil, D. Canadic, et al., Metall. Mater. Trans. A, 33, No. 12, 3661–3672 (2002).

    Article  Google Scholar 

  12. I. V. Kireeva, Yu. I. Chumlyakov, V. A. Kirillov, et al., Russ. Phys. J., 53, No. 10, 1103–1106 (2010).

    Article  Google Scholar 

  13. I. V. Kireeva, Yu. I. Chumlyakov, V. A. Kirillov, et al., Pis’ma Zh. Tekh. Fiz., 37, No. 10, 86–94 (2011).

    Google Scholar 

  14. Yu. I. Chumlyakov, I. V. Kireeva, E. Yu. Panchenko, et al., Russ. Phys. J., 54, No. 8, 937–950 (2011).

    Article  Google Scholar 

  15. J. Ma, B. Kockar, A. Evirgen, et al., Acta Mater., 60, No. 5, 2186–2195 (2012).

    Article  Google Scholar 

  16. P. Kross, T. Niendorf, I. Karaman, et al., Funct. Mater. Lett., 5, No. 4, 1250045 (4 pp.) (2012).

  17. Yu. I. Chumlyakov, I. V. Kireeva, O. A. Kuts, and D. A. Kuksgauzen, Russ. Phys. J., 57, No. 10, 1328–1335 (2015).

    Article  Google Scholar 

  18. H. E. Karaca, A. S. Turabi, Y. I. Chumlyakov, et al., Scripta Mater., 120, 54–57 (2016).

    Article  Google Scholar 

  19. Yu. I. Chumlyakov, I. V. Kireeva, I. V. Kretinina, et al., Russ. Phys. J., 56, No. 8, 920–929 (2013).

    Article  Google Scholar 

  20. Y. I. Chumlyakov, I. V. Kireeva, O. A. Kutz, et al., Scripta Mater., 119, 43–46 (2016).

    Article  Google Scholar 

  21. W. Abuzaid and H. Sehitoglu, Mater. Des., 160, 642–651 (2018).

    Article  Google Scholar 

  22. O. A. Kuts, M. Yu. Panchenko, I. V. Kireeva, and Yu. I. Chumlyakov, Izv. Vyssh. Uchebn. Zaved., Fiz., 59, No. 7/2, 128–133 (2016).

  23. L. W. Tseng, Ji Ma, I. Karaman, et al., Scripta Mater., 101, 1–4 (2015).

  24. K. Otsuka and X. Ren, Prog. Mater. Sci., 50, No. 5, 511–678 (2005).

    Article  Google Scholar 

  25. E. Nembach, Particle Strengthening of Metals and Alloys, John Wiley & Sons, Inc. (1997).

    Google Scholar 

  26. L. M. Brown and R. K. Ham, in: Dislocation-Particle Interactions, Strengthening Methods in Crystal, A. Kelly and R. B. Nickolson, eds., New York (1971), pp. 12–135.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. I. Chumlyakov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 12, pp. 126–133, December, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chumlyakov, Y.I., Kireeva, I.V., Kuksgauzen, I.V. et al. Superelasticity and Shape Memory Effect Under Tension and Compression in the [001]-Oriented Single Crystals of Non-Equiatomic FeNiCoAlTi High-Entropy Alloy. Russ Phys J 62, 2296–2305 (2020). https://doi.org/10.1007/s11182-020-01980-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-020-01980-1

Keywords

Navigation