Skip to main content
Log in

Fluorescence of Laurdan in Homogeneous Solvents and Water-Micellar Solutions

  • Published:
Russian Physics Journal Aims and scope

The spectral-luminescent properties of fluorescent probe laurdan (6-dodecanoyl-2-dimethylaminonaphthalene) in homogeneous solvents of different chemical natures and water-micellar solutions (WMS) of non-ionic Triton Х-100 surfactant are investigated. The relative contributions of the basicity and acidity parameters of the solvents to the laurdan fluorescence band shift are estimated. The use of the water-micellar solution of Triton Х-100 as a solvent leads to a considerable change of the fluorescent laurdan properties: occurrence of a new fluorescence band and absence of hydrogen bonding of the laurdan carbonyl group with water molecules. The physical and chemical properties of the Triton Х-100 solvent and the polarity of laurdan surroundings in WMS are estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. N. G. Bakhshiev, Photophysics of Dipole-Dipole Interactions: Solvation and Complexing Processes [in Russian], St. Petersburg State University Publishing House, Saint Petersburg (2005).

    Google Scholar 

  2. A. N. Terenin, Photonics of Dye Molecules [in Russian], Nauka, Leningrad (1967).

    Google Scholar 

  3. V. Yu. Akhadov, Dielectric Properties of Binary Solutions [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  4. V. N. Verezhnikov, Organized Media Based on Colloid Surfactants: A Teaching Textbook [in Russian], Voronezh State University Publishing House, Voronezh (2008).

    Google Scholar 

  5. N. A. Vodolazkaya, Yu. V. Isaenko, and S. T. Goga, in: Ultra-micro-heterogeneous Systems and Their Influence on Acid-Base Equilibria and Solvatochromic Properties of Indicators: A Teaching Textbook, S. T. Goga, ed. [in Russian], Publishing House of Kharkov National University named after V. N. Karazin, Kharkov (2006).

  6. Yu. P. Morozova, O. N. Tchaikovskaya, V. Ya. Artyukhov, et al., Zh. Tekh. Fiz., 69, No. 10, 1611–1614 (1995).

    Google Scholar 

  7. S. N. Shtykov and I. Yu. Goryacheva, Opt. Spektrosk., 83, No. 4, 698 (1997).

    Google Scholar 

  8. S. N. Shtykov, Zh. Analit. Khim., 57, No. 10, 1018–1028 (2002).

    Google Scholar 

  9. https://studylib.ru/doc/2335079/biofizika-membrannyh-processov-v-kletke.

  10. C. Arnulphi, J. Sot, M. García-Pacios, et al., Biophys. J., 93, No. 10, 3504–3514 (2007).

    Article  ADS  Google Scholar 

  11. G. P. Zubritskaya, Biophysical characteristics of blood cells and biological liquids as indicators of pathological status in a patient, Author’s Abstract of Cand. Biol. Sci. Dissert., Institute of Genetics and Cytology of NAS of Belarus, Minsk (2016).

  12. N. Johnsson and K. Johnsson, ACS Chem. Biol., 1, 31–38 (2007).

    Article  Google Scholar 

  13. T. Terai and T. Nagano, Curr. Opin. Chem. Biol., 12, 515–521 (2008).

    Article  Google Scholar 

  14. O. Golfetto, E. Gratton, and E. Hinde, Biophys J., 104, No. 6, 1238–1247 (2013).

    Article  ADS  Google Scholar 

  15. G. E. Dobretsov, Fluorescent Probes in Investigation of Cells, Membranes, and Lipoproteins, in Russian, Mir, Moscow (1989).

    Google Scholar 

  16. T. Parasassi, G. De Stasio, A. d’Ubaldo, and E. Gratton, Biophys. J., 57, No. 6, 1179–1186 (1990).

    Article  Google Scholar 

  17. L. Malacrida, E. Gratton, and D. M. Jameson, Methods Appl. Fluoresc., 3, No. 4, 047001 (2015).

    Article  ADS  Google Scholar 

  18. L. Malacrida and E. Gratton, Free Radic. Biol. Med., 128, 144–156 (2018).

    Article  Google Scholar 

  19. T. Yu. Titova, Yu. P. Morozova, and B. V. Korolev, Russ. Phys. J., 59, No. 5. 672–678 (2016).

    Article  Google Scholar 

  20. M. Jozefowicz, K. A. Kozyra, J. R. Heldt, and J. Heldt, Chem. Phys., 320, 45–53 (2005).

    Article  Google Scholar 

  21. N. O. Mchedlov-Petrosyan, Differentiation of the Force of Organic Acids in True and Organized Solutions [in Russian], Publishing House of Kharkov National University named after V. N. Karazin, Kharkov (2004).

    Google Scholar 

  22. Yu. V. Panyukov, Study of the process of amorphous aggregation of protein of the virus coating, Author’s Abstract of Cand. Biol. Sci. Dissert., Moscow (2006).

  23. K. Holmberg, Bo Jönsson, B. Kronberg and B. Lindman, Surfactants and Polymers in Aqueous Solutions [Russian translation], Publishing House “BINOM. Knowledge Laboratory,” Moscow (2012).

  24. https://www.sigmaaldrich.com/catalog/product/sial/x100?lang=en&region=RU.

  25. J. Rosenthal, E. R. Young, and D. G. Nocera, Inorg. Chem., 46, No. 21, 8668–8675 (2007).

    Article  Google Scholar 

  26. M. W. Schmidt, K. K. Baldridge, J. A. Boatz, et al., J. Comput. Chem., 14, 1347–1363 (1993).

    Article  Google Scholar 

  27. http://skif.tsu.ru.

  28. G. V. Mayer, V. Ya. Artyukhov, T. N. Kopylova, et al., Electronically Excited States and Photochemistry of Organic Compounds [in Russian], Nauka, Novosibirsk (1997).

    Google Scholar 

  29. T. Yu. Titova, V. Ya. Artyukhov, O. M. Zharkova, and Ju. P. Morozova, Spectrochim. Acta А, 124, 64–69 (2014).

    Article  Google Scholar 

  30. V. Schmidt, Optical Spectroscopy for Chemists and Biologists [in Russian], Tekhnosfera, Moscow (2007).

    Google Scholar 

  31. O. V. Sverdlova, Electronic Spectra in Organic Chemistry [in Russian], Khimiya, Leningrad (1985).

    Google Scholar 

  32. E. Lippert, J. Electrochem. Soc., 61, 962–969 (1957).

    Google Scholar 

  33. J. R. Lakowicz, Principles of Fluorescent Spectroscopy [Russian translation]. Mir, Moscow (1986).

    Google Scholar 

  34. C. Reichardt, Solvents and Solvent Effects in Organic Chemistry, Willey-VCH, Weinheim (2003).

    Google Scholar 

  35. J. Catalan, J. Phys. Chem. B, No. 113, 5951–5960 (2009).

  36. Ju. P. Morozova, O. M. Zharkova, T. Yu. Balakin, and V. Ya. Artyukhov, Zh. Prikl. Spektrosk., 76, No. 3, 334–341 (2009).

    Google Scholar 

  37. C. Vequi-Suplicy, Kaline Coutinho, and M. Teresa Lamy, J. Fluoresc., 25, No. 3, 621–629 (2015).

    Article  Google Scholar 

  38. B. T. Eleusinov, Ukr. Fiz, Zh., 45, No. 1, 64–68 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Yu. Titova.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 12, pp. 156–164, December, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Titova, T.Y., Morozova, J.P. & Korolev, B.V. Fluorescence of Laurdan in Homogeneous Solvents and Water-Micellar Solutions. Russ Phys J 62, 2330–2339 (2020). https://doi.org/10.1007/s11182-020-01985-w

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-020-01985-w

Keywords

Navigation