Skip to main content
Log in

Determination of Viscoelastic Characteristics of Whole Blood Based on the Low-Frequency Piezotromboelastography Method

  • Published:
Russian Physics Journal Aims and scope

A theoretical and experimental study of the viscoelastic properties of whole blood under oscillating shear stresses has been carried out. Based on ultrasonic elastography, a mathematical model and a method for calculating the complex viscosity coefficient of whole blood during its coagulation have been developed. The complex viscosity coefficient of whole blood and its real and imaginary parts were calculated. The calculated viscosity coefficient of blood at the beginning of the coagulation process is in good agreement with the data of rheometric measurements. The results obtained confirm the ability of using this approach to determine the viscoelastic properties of whole blood and analyze their dynamics during coagulation in a regime as close as possible to an in vivo study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Q. Cowan, D. J. Cho, and R. S. Rosenson, Cardiovasc. Drugs. Ther., 26, 339– 348 (2012).

    Article  Google Scholar 

  2. F. Yilmaz and M. Y. Gundogdu, Korea-Australia Rheol. J., 20, No. 4, 197–211 (2008).

    Google Scholar 

  3. Rheology – new Concepts, Applications and Methods, ed. by Rajkumar Durairaj, Pub. InTECH (2013).

  4. M. Anand and K. R. Rajagopal, Fluids, 2, No. 3, 35(9) (2017).

    Article  Google Scholar 

  5. V. V. Udut, I. I. Tyutrin, M. A. Solovev, et al., Bull. Exp. Biol. Med., 2, 162– 165 (2015).

    Google Scholar 

  6. B. V. Derjaguin, U. B. Bazaron, Kh. D. Lamazhapova, et al., Phys. Rev. A, 42, 2255–2258 (1990).

    Article  ADS  Google Scholar 

  7. A. M. Robertson, A. Sequeira, and M. V. Kameneva, Oberwolfach Seminars, 37, 63–120 (2008).

    Google Scholar 

  8. N. Antonova, Biotechnology & Biotechnological Equipment, 26, No. 5, 3286–3291 (2012).

    Article  Google Scholar 

  9. V. M. Brambatti, C. R. de Andrade, and E. L. Zaparoli, Proc. COBEM. 20th Int. Congress of Mechanical Engineering, Gramado, Brasil (2009).

  10. P. C. Sousa, J. Carneiro, R. Vaz, et al., Biorheology, 50, 269–282 (2013).

    Article  Google Scholar 

  11. N. Antonova, Series on Biomechanics, 27, 44–50 (2012).

    Google Scholar 

  12. G. B. Thurston, Biophys. J., 12, 1205–1217 (1972).

    Article  ADS  Google Scholar 

  13. A. Marcinkowska-Gapinska and P. Kowal, Acta Phys. Polonica A: Acoustic and Biomed. Eng., 121, No. 1, A54–A56 (2012).

    Article  Google Scholar 

  14. I. I. Tyutrin and V. V. Udut, Low-Frequency Piezotromboelastografiy of Whole Blood: Algorithms for the Diagnosis and Correction of Hemostasiological Disorders [in Russian], Izd. Dom Tomsk Gosud. Univers., Tomsk (2016).

    Google Scholar 

  15. S. J. Hund, M. V. Kameneva, and J. F. Antaki, Fluids, 2, No. 10, 2–17 (2017).

    Google Scholar 

  16. A. A. Butylin, M. A. Panteleev, and F. I. Ataullakhanov, Ross. Khim. Zh., L1, No. 1, 45–50 (2007).

    Google Scholar 

  17. C.-C. Huang, Y.-H. Lin, T.-Y. Liu, et al., J. Med. Biol. Eng., 31, No. 2, 79–86 (2011).

    Article  Google Scholar 

  18. J. D. Dias, E. I. Haney, B. A. Mathew, et al., Arch. Pathol. Lab. Med., 141, 569–577 (2017).

    Article  Google Scholar 

  19. M. Thakur and A. B. Ahmed, Int. J. Periop. Ultras. Appl. Tech., 1, No. 1, 25–29 (2012).

  20. J. C. Cardenas, C. M. Rein-Smith, and F. C. Church, Encyclopedia of Cell Biology, 1, 714–722 (2016).

    Article  Google Scholar 

  21. V. P. Demkin, S. V. Mel’nichuk, V. V. Udut, et al., Russ. Phys. J., 62, No. 6, 47–56 (2019).

    Article  Google Scholar 

  22. V. I. Erofeev, V. V. Kazhaev, and N. P. Semerikova, Waves in the Rods. Dispersion, Dissipation, Nonlinearity [in Russian], Fizmatlit, Moscow (2002).

  23. F. Rashid, M. Vartdal, and J. Grue, J. Eng. Math., 70, 281–295 (2011).

    Google Scholar 

  24. B. V. Derjaguin, U. B. Bazarona, Kh. D. Lamazhapova, et al., Prog. Surf. Sci., 40, 462–465 (1992).

    Article  ADS  Google Scholar 

  25. N. Vargaftik, Handbook of Thermophysical Properties of Gases and Liquids [in Russian], Nauka, Moscow (1972).

    Google Scholar 

  26. T. S. Demelova, D. N. Makarova, B. B. Badmaev, et al., Res. Notes Phys. Faculty, 5, 145304 (2014).

    Google Scholar 

  27. B. B. Badmaev, B. B. Damdinov, and D. S. Sanditov, Acoustics J., 50, No. 2, 1–5 (2004).

    ADS  Google Scholar 

  28. K. Koga, T. Kimura, R. Sakai, et al., J. Oleo Sci., 63, No. 12, 1309–1322 (2014).

    Article  Google Scholar 

  29. B. M. Johnstona, P. R. Johnstona, S. Corneyb, et al., J. Biomechanics, 37, 709–720 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Demkin.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 12, pp. 55–62, December, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demkin, V.P., Mel’nichuk, S.V., Udut, V.V. et al. Determination of Viscoelastic Characteristics of Whole Blood Based on the Low-Frequency Piezotromboelastography Method. Russ Phys J 62, 2219–2227 (2020). https://doi.org/10.1007/s11182-020-01969-w

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-020-01969-w

Keywords

Navigation