Skip to main content
Log in

Correlation of Small-Signal Modulation with Digital Modulation Characteristics of High-Speed Semiconductor Lasers

  • OPTICAL METHODS OF HIGH-PRECISION APPLIED DIAGNOSTICS
  • Published:
Physics of Wave Phenomena Aims and scope Submit manuscript

Abstract

This paper introduces correlation of the small-signal modulation characteristics with those of digital modulation of high-speed multiple-quantum-well semiconductor laser. The accuracy of applying the common small-signal approximation to calculate the modulation bandwidth is evaluated by comparing the obtained values with those calculated by the reliable technique of time-integration of the rate equations. Also, we present correlation between the maximum bit rate and the small-signal bandwidth at given bias current and modulation index. We show that the bandwidth frequencies predicted by the small-signal approximation are higher than those calculated by the time integration. The difference increases with the increase of the bias current reaching 8 GHz when the current exceeds 3.5 times the threshold current. We predict also the modulation conditions required to achieve modulation speed as high as 40 Gbps. The ratio of the maximum bit rate to the small-signal bandwidth exceeds unity and reaches 1.6 under deep modulation with modulation index equal to 0.5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. H. Dalir and F. Koyama, “Bandwidth enhancement of single-mode VCSEL with lateral optical feedback of slow light,” IEICE Electron. Expr.8 (13), 1075 (2011).

    Article  Google Scholar 

  2. K. Petermann, Laser Diode Modulation and Noise (Kluwer, Dordrecht, 1988).

    Book  Google Scholar 

  3. K. Sato, S. Kuwahar, and Y. Miyamoto, “Chirp characteristics of 40-Gb/s directly modulated distributed-feedback laser diodes,” J. Lightwave Technol.23 (11), 3790 (2005).

    Article  ADS  Google Scholar 

  4. M. Ahmed, M. Yamada, and S. W. Z. Mahmoud, “Analysis of semiconductor laser dynamics under gigabit rate modulation,” J. Appl. Phys.101 (3), 33119 (2007).

    Article  Google Scholar 

  5. M. Ahmed, S. W. Mahmoud, and A. A. Mahmoud, “Comparative study on modulation dynamic characteristics of laser diodes using RZ and NRZ bit formats,” Int. J. Numer. Model.27 (1), 138 (2014).

    Article  Google Scholar 

  6. J. S. Gustavsson, A. Haglund, L. Bengtsson, and A. Lasrsson, “High-speed digital modulation characteristics of oxide-confined vertical-cavity surface-emitting lasers-numerical simulations consistent with experimental results,” IEEE J. Quantum Electron.38 (8), 1089 (2002).

    Article  ADS  Google Scholar 

  7. M. Ahmed, S. W. Mahmoud, and A. A. Mahmoud, “Influence of Pseudorandom bit format on the direct modulation performance of semiconductor lasers,” Pramana J. Phys.79 (6), 1443 (2012).

    Article  ADS  Google Scholar 

  8. G. P. Agrawal, Fiber-Optic Communication Systems (Wiley, N.Y., 2002).

    Book  Google Scholar 

  9. S. W. Mahmoud, M. F. Ahmed, K. Abdelhady, and A. Mahmoud, “Estimation of parameters controlling direct modulation of semiconductor lasers,” in Proceedings of the National Radio Science Conference (March 17–19,2009, Cairo, Egypt), p. 318.

  10. M. Ahmed and A. El-Lafi, “Analysis of small-signal intensity modulation of semiconductor lasers taking account of gain suppression,” Pramana J. Phys.71 (1), 99 (2008).

    Article  ADS  Google Scholar 

  11. G. P. Agrawal and N. K. Dutta, Semiconductor Lasers (Van Nostrand Reinhold, N.Y., 1993).

    Google Scholar 

  12. M. Ahmed, M. Yamada, and M. Saito, “Numerical modeling of intensity and phase noise in semiconductor lasers,” IEEE J. Quantum Electron.37 (12), 1600 (2001).

    Article  ADS  Google Scholar 

  13. J. C. Cartledge and G. S. Burley, “The effect of laser chirping on lightwave system performance,” J. Lightwave Technol.7 (3), 568 (1989).

    Article  ADS  Google Scholar 

  14. R. L. Burden, J. D. Faires, and A. C. Reynolds, Numerical Analysis, 2nd ed. (Prindle, Weber and Schmidt, Boston, 1981).

    MATH  Google Scholar 

  15. D. Derickson and M. Müller, Digital Communications Test and Measurement: High-Speed Physical Layer Characterization (Pearson Education Inc., 2007).

    Google Scholar 

  16. Understanding Eye Pattern Measurements. Application Note No. 11410-00533, Anritsu.

  17. M. Ahmed, A. Bakry, and S. W. Z. Mahmoud, “Influence of chirp of high-speed laser diodes and fiber dispersion on performance of non-amplified 40-Gbps optical fiber links,” Int. J. Phys. Math. Sci.9 (1), 12 (2015).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Mahmoud.

Ethics declarations

The text was submitted by the authors in English.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rizk, T., Mahmoud, A., Abdel-Rahman, M. et al. Correlation of Small-Signal Modulation with Digital Modulation Characteristics of High-Speed Semiconductor Lasers. Phys. Wave Phen. 28, 49–54 (2020). https://doi.org/10.3103/S1541308X20010070

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1541308X20010070

Navigation