Skip to main content
Log in

A study on calcium phosphate/barium titanate composites: phase characterization, piezoelectric property, and cytocompatibility

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

A series of hydroxyapatite/barium titanate (HA/BT) and tricalcium phosphate/barium titanate (TCP/BT) composites were prepared in various mixing ratios and sintered at temperatures between 500 and 1300 °C using the powder metallurgy method. Sintering was performed under different atmospheres to evaluate the effect of the atmosphere on the phase stability of the composites. BT phase showed slightly higher phase stability in TCP/BT composites than in HA/BT composites. BT with low concentration behaved as a stabilizer of α-TCP. A reaction between HA and BT occurred at about 900 °C yielding byproducts of CaTiO3 and Ba2TiO4, at the expense of both HA and BT phases. CaTiO3 and Ba2TiO4 phases associated with low BT concentrations were observed in the composites sintered at temperatures between 1100 and 1300 °C. The HA/BT composites having BT concentrations less than 95 wt.% did not show any measurable piezoelectric response. Composites with BT promoted osteoblast adhesion even better than pure HA and TCP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Fukada, E., Yasuda, I.: On the piezoelectric effect of bone. J Phys Soc Jpn. 12, 1158 (1957)

    Google Scholar 

  2. Bassett, C.A., Becker, R.O.: Generation of electric potentials by bone in response to mechanical stress. Science. 137, 1063 (1962)

    CAS  Google Scholar 

  3. Fukada, E., Yasuda, I.: Piezoelectric effects in collagen. Jpn J Appl Phys. 3, 117 (1964)

    CAS  Google Scholar 

  4. McElhaney, J.H.: The charge distribution on the human femur due to load. J Bone Jt Surg. 49A, 1561 (1967)

    Google Scholar 

  5. Hastings, G.W., Mahmud, F.A.: The electromechanical properties of fluid filled bone: a new dimension. J Mater Sci Mater Med. 2, 118 (1991)

    Google Scholar 

  6. Frost, H.M.A.: A 2003 update of bone physiology and Wolff’s Law for clinicians. Angle Orthod. 74, 3 (2004)

    Google Scholar 

  7. Tomofuji, T., Ekuni, D., Azuma, T., Irie, K., Endo, Y., Kasuyama, K., Nagayama, M., Morita, M.: Effects of electrical stimulation on periodontal tissue remodeling in rats. J Periodontal Res. 48, 177 (2013)

    CAS  Google Scholar 

  8. Aaron, R.K., Ciombor, D.M.: Therapeutic effects of electromagnetic fields in the stimulation of connective tissue repair. J Cell Biochem. 52, 42 (1993)

    CAS  Google Scholar 

  9. Ciombor, D.M., Aaron, R.K.: The role of electrical stimulation in bone repair. Foot Ankle Clin. 10, 579 (2005)

    Google Scholar 

  10. Zhao, M., Penninger, J., Isseroff, R.R.: Electric activation of wound-healing pathways. Adv Skin Wound Care. 1, 567 (2010)

    Google Scholar 

  11. Zhao, Z., Watt, C., Karystinou, A.: Directed migration of human bone marrow mesenchymal stem cells in a physiological direct current electric field. Eur Cell Mater. 22, 344 (2011)

    CAS  Google Scholar 

  12. Madou, M.J.: Fundamentals of microfabrication: the science of miniaturization, 2nd edn. CRC Press, Florida (2004)

    Google Scholar 

  13. Feigenbaum, E.: Cochlear implant devices for the profoundly hearing impaired. IEEE Eng Med Bio Mag. 6, 10 (1987)

    CAS  Google Scholar 

  14. Rebscher, S.J.: Cochlear implants: design and construction. In: Gray, R.F. (ed.) Cochlear Implants, pp. 74. Croom-Helm, London (1985)

    Google Scholar 

  15. Guo, S., Dong, X., Wang, G., Lu, F., Kang, H., Wang, Y.: Properties evaluation of piezoelectric materials in application of cochlear implant. Ferroelectrics. 413, 272 (2011)

    CAS  Google Scholar 

  16. Glattke, T.J.: The inner ear anatomy and physiology. In: Martin, F.N. (eds.) Medical audiology: disorders of hearing, pp. 195. Prentice-Hall, New Jersey (1981)

  17. Park, Y.J., Hwang, K.S., Song, J.E., Ong, J.L., Rawls, H.R.: Growth of calcium phosphate on poling treated ferroelectric BaTiO3 ceramics. Biomaterials. 23, 3859 (2002)

    CAS  Google Scholar 

  18. Hwang, K.S., Song, J.E., Jo, J.W., Yang, H.S., Park, Y.J., Ong, J.L., Rawls, H.R.: Effect of poling conditions on growth of calcium phosphate crystal in ferroelectric BaTiO3 ceramics. J Mater Sci Mater Med. 13, 133 (2002)

    CAS  Google Scholar 

  19. Park, J.B., Kelly, B.J., Kenner, G.H., Vonrecum, A.F., Grether, M.F., Coffeen, W.W.: Piezoelectric ceramic implants in vivo results. J Biomed Mater Res. 15, 103 (1981)

    CAS  Google Scholar 

  20. Kobayashi, T., Nakamura, S., Yamashita, K.: Enhanced osteobonding by negative surface charges of electrically polarized hydroxyapatite. J Biomed Mater Res. 57, 477 (2001)

    CAS  Google Scholar 

  21. Ohgaki, M., Kizuki, T., Katsura, M., Yamashita, K.: Manipulation of selective cell adhesion and growth by surface charges of electrically polarized hydroxyapatite. J Biomed Mater Res. 57, 366 (2001)

    CAS  Google Scholar 

  22. Nakamura, M., Sekijima, Y., Nakamura, S., Kobayashi, T., Niwa, K., Yamashita, K.: Role of blood coagulation components as intermediators of high osteoconductivity of electrically polarized hydroxyapatite. J Biomed Mater Res. 79A, 627 (2006)

    CAS  Google Scholar 

  23. Nakamura, S., Kobayashi, T., Nakamura, M., Itoh, S., Yamashita, K.: Electrostatic surface charge acceleration of bone ingrowth of porous hydroxyapatite/beta tricalcium phosphate ceramics. J Biomed Mater Res. 92A, 267 (2010)

    CAS  Google Scholar 

  24. Nakamura, M., Nagai, A., Tanaka, Y., Sekijima, Y., Yamashita, K.: Polarized hydroxyapatite promotes spread and motility of osteoblastic cells. J Biomed Mater Res. 92A, 783 (2010)

    CAS  Google Scholar 

  25. Silva, C.C., Thomazini, D., Pinherio, A.G., Aranha, N., Figueiró, S.D., Góes, J.C., Sombra, A.S.B.: Collagen-hydroxyapatite films: piezoelectric properties. Mater Sci Eng B. 86, 210 (2001)

    Google Scholar 

  26. Park, J.B., von Recum, A.F., Kenner, G.H., Kelly, B.J., Coffeen, W.W., Grether, M.F.: Piezoelectric ceramic implants - a feasibility study. J Biomed Mater Res. 14, 269 (1980)

    CAS  Google Scholar 

  27. Baxter, F.R., Turner, I.G., Bowen, C.R., Gitting, J.P., Chaudhuri, J.B.: An in vitro study of electrically active hydroxyapatite-barium titanate ceramics using Saos-2 cells. J Mater Sci Mater Med. 20, 1697 (2009)

    CAS  Google Scholar 

  28. Jianqing, F., Huipin, Y., Xingdong, Z.: Promotion of osteogenesis by a piezoelectric biological ceramic. Biomaterials. 18, 1531 (1997)

    Google Scholar 

  29. Liu, B., Chen, L., Shao, C., Zhang, F., Zhou, K., Cao, J., Zhang, D.: Improved osteoblasts growth on osteomimetic hydroxyapatite/BaTiO3 composites with aligned lamellar porous structure. Mater Sci Eng C. 61, 8 (2016)

    CAS  Google Scholar 

  30. Zhang, Y., Chen, L., Zeng, J., Zhou, K., Zhang, D.: Aligned porous barium titanate/hydroxyapatite composites with high piezoelectric coefficients for bone tissue engineering. Mater Sci Eng C. 39, 143 (2014)

    CAS  Google Scholar 

  31. Dubey, A.K., Kakimoto, K.: Impedance spectroscopy and mechanical response of porous nanophase hydroxyapatite–barium titanate composite. Mater Sci Eng C. 63, 211 (2016)

    CAS  Google Scholar 

  32. Aba, A., Ergun, C.: Phase stability in hydroxyapatite/barium titanate piezo bioceramics. Defect and Diffusion Forum. 273-276, 1 (2008)

    CAS  Google Scholar 

  33. Vouilloz, F.J., Castro, M.S., Vargas, G.E., Gorustovich, A., Fanovich, M.A.: Reactivity of BaTiO3-Ca10(PO4)6(OH)2 phases in composite materials for biomedical applications. Ceram Int. 43, 4212 (2017)

    CAS  Google Scholar 

  34. Ergun, C.: Synthesis and characterization of machinable calcium phosphate/lanthanum phosphate composites. J Mater Process Technol. 199, 178 (2008)

    CAS  Google Scholar 

  35. Ergun, C.: Novel machinable calcium phosphate/CaTiO3 composites. Ceram Int. 37, 1143 (2011)

    CAS  Google Scholar 

  36. Ergun, C., Webster, T.J., Bizios, R., Doremus, R.H.: Hydroxylapatite with substituted Mg, Zn, Cd, and Y: structure and microstructure. J Biomed Mater Res. 59, 305 (2002)

    CAS  Google Scholar 

  37. Ergun, C.: Effect of Ti substitution on the structure of hydroxylapatite. J Eur Ceram Soc. 28, 2137 (2008)

    CAS  Google Scholar 

  38. Ergun, C.: Enhanced phase stability in hydroxylapatite / zirconia composites with hot isostatic pressing. Ceram Int. 37, 935 (2011)

    CAS  Google Scholar 

  39. Zyman, Z., Tkachenko, M.: CO2 gas-activated sintering of carbonated hydroxyapatites. J Eur Ceram Soc. 31, 241 (2011)

    CAS  Google Scholar 

  40. Landi, E., Tampieri, A., Celotti, G., Vichi, L., Sandri, M.: Influence of synthesis and sintering parameters on the characteristics of carbonate apatite. Biomaterials. 25, 1763 (2004)

    CAS  Google Scholar 

  41. Cotell, C.M., Chrisey, D.B., Grabowski, K.S., Spregue, J.A.: Pulsed laser deposition of hydroxyapatite thin films on Ti-6Al-4V. J Appl Biomater. 3, 87 (1992)

    Google Scholar 

  42. Sardin, G., Varela, M., Morenza, J.L.: Deposition of hydroxyapatite coatings by laser ablation. In: Brown, P.W., Constanz, B. (eds.) Hydroxyapatite and related materials, p. 225. CRC Press, Boca Raton (1994)

    Google Scholar 

  43. Arias, J.L., García-Sanz, F.J., Mayor, M.B., Chiussi, S., Pou, J., León, B., Pérez-Amor, M.: Physicochemical properties of calcium phosphate coatings produced by pulsed laser deposition at different water vapor pressures. Biomaterials. 19, 883 (1998)

    CAS  Google Scholar 

  44. Ergun, C., Evis, Z., Webster, T.J., Sahin, F.C.: Synthesis and microstructural characterization of nano-size calcium phosphates with different stoichiometry. Ceram Int. 37, 971 (2011)

    CAS  Google Scholar 

  45. Ergun, C., Liu, H., Halloran, J.W., Webster, T.J.: Increased osteoblast adhesion on nanograined hydroxyapatite and tricalcium phosphate containing calcium titanate. J Biomed Mater Res. 80A, 990 (2007)

    CAS  Google Scholar 

  46. Sinyaev, V.A., Shustikova, E.S., Levchenko, L.V., Karzhaubaeva, R.A., Tokseitova, G.A.: Amorphous calcium barium monophosphate and its dehydration in air at room temperature. Russian J App Chem. 81, 1899 (2008)

    CAS  Google Scholar 

Download references

Funding

This project was funded by Istanbul Technical University, Research Project Department, Project #31605 and #31957.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Celaletdin Ergun.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozcelik, B., Ergun, C. & Liu, H. A study on calcium phosphate/barium titanate composites: phase characterization, piezoelectric property, and cytocompatibility. J Aust Ceram Soc 56, 1197–1216 (2020). https://doi.org/10.1007/s41779-020-00468-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-020-00468-y

Keywords

Navigation