Skip to main content
Log in

Synchronous Generator Control Concept and Modified Droop for Frequency and Voltage Stability of Microgrid Including Inverter-Based DGs

  • Original Article
  • Published:
Journal of Electrical Engineering & Technology Aims and scope Submit manuscript

Abstract

Microgrids have gained much attention in recent years. The main challenge of this system is controlling the voltage and frequency in islanded mode. The inverter-based distributed generators (DGs) have low inertial property and in load change, the microgrid frequency and voltage are easily violated. Using the synchronous generator (SG) control concept, the inertial property of SG results in more stability of frequency and voltage in microgrid. In other hand, droop method is the basic idea of control in islanded mode. However, the simple or modified droop method cannot guarantee returning the main parameters to the reference values when they are violated. Thus, combining the control concept of SG and also modified droop method can enhance the voltage and frequency stability and ensure returning the violated values to the reference ones. The main goal of this paper is proposing this combinational control while simulation results show that using the proposed control strategy, the stability of frequency and voltage is improved even in sudden and different load changes compared with other efficient works in this filed. Moreover, without control strategy, the instability in frequency and voltage may be undesirable in the proposed system as discussed in the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Rajan E, Amrutha S (2017) Synchronverter based HVDC transmission. In: 2017 innovations in power and advanced computing technologies (i-PACT), Vellore, pp 1–6. https://doi.org/10.1109/ipact.2017.8245084

  2. Shi R, Zhang X, Hu C et al (2018) Self-tuning virtual synchronous generator control for improving frequency stability in autonomous photovoltaic-diesel microgrids. J Mod Power Syst Clean Energy 6:482. https://doi.org/10.1007/s40565-017-0347-3

    Article  Google Scholar 

  3. Liu X, Loh PC, Blaabjerg F, Wang P (2012) Load sharing using droop control for parallel operation of matrix converters as distributed generator interfaces in isolated mode. In: 2012 IEEE Energy Conversion Congress and Exposition (ECCE), Raleigh, NC, pp 962–968. https://doi.org/10.1109/ecce.2012.6342715

  4. Karapanos V, de Haan S, Zwetsloot K (2011) Real time simulation of a power system with VSG hardware in the loop. In: Proceedings of the IECON 2011—37th annual conference of the IEEE industrial electronics society, Melbourne, Australia, 7–10 November, pp 3748–3754

  5. Sharma RK, Mudaliyar S, Mishra S (2018) Decentralized power management and load sharing for parallel operation of diesel generator and PV-battery based autonomous AC microgrid. In: 2018 IEEMA engineer infinite conference (eTechNxT), New Delhi, pp 1–6. https://doi.org/10.1109/etechnxt.2018.8385350

  6. Ahn S, Park J, Chung I, Moon S, Kang S, Nam S (2010) Power-sharing method of multiple distributed generators considering control modes and configurations of a microgrid. IEEE Trans Power Deliv 25(3):2007–2016. https://doi.org/10.1109/TPWRD.2010.2047736

    Article  Google Scholar 

  7. Majumder R, Ghosh A, Ledwich G (2009) Angle droop versus frequency droop in a voltage source converter based autonomous microgrid. In: Proceedings in power and energy society general meeting, pp 1–8

  8. Majumder R, Chaudhuri B, Ghosh A (2010) Improvement of stability and load sharing in an autonomous microgrid using supplementary droop control loop. IEEE Trans Power Syst 25(2):796–808

    Article  Google Scholar 

  9. Majumder R, Ledwich G, Ghosh A (2010) Droop control of converter-interfaced microsources in rural distributed generation. IEEE Trans Power Deliv 25(4):2768–2778

    Article  Google Scholar 

  10. Rokrok E, Golshan MEH (2010) Adaptive voltage droop scheme for voltage source converters in an islanded multi-bus microgrid. IET Gener Trans Distrib 4(5):562–578

    Article  Google Scholar 

  11. Vandoorn TL, Meersman B, Degroote L (2011) A control strategy for islanded microgrids with dc-link voltage control. IEEE Trans Power Deliv 26(2):703–713

    Article  Google Scholar 

  12. Vandoorn TL, Renders B, Degroote L (2011) Active load control in islanded microgrids based on the grid voltage. IEEE Trans Smart Grid 2(1):139–151

    Article  Google Scholar 

  13. Vandoorn TL, Meersman B, De Kooning J (2012) Automatic power sharing modification of P/V droop controllers in low-voltage resistive microgrids. IEEE Trans Power Deliv 27(4):2318–2325

    Article  Google Scholar 

  14. Guerrero JM, Vasquez JC, Matas J (2011) Hierarchical control of droop-controlled AC and DC microgrids—a general approach toward standardization. IEEE Trans Ind Electron 58(1):158–172

    Article  Google Scholar 

  15. Guerrero JM, Loh P, Chandorkar M (2013) Advanced control architectures for intelligent microgrids − part I: decentralized and hierarchical control. IEEE Trans Ind Electron 60(4):1254–1262

    Article  Google Scholar 

  16. Katiraei F, Iravani MR (2006) Power management strategies for a microgrid with multiple distributed generation units. IEEE Trans Power Syst 21(4):1821–1831

    Article  Google Scholar 

  17. Won Dong-Jun, Ahn Seon-Ju, Chung Il-Yop (2012) Power sharing method for a grid connected microgrid with multiple distributed generators. J Electr Eng Technol 7(4):459–467. https://doi.org/10.5370/JEET.2012.7.4.459

    Article  Google Scholar 

  18. Tarasiuk T, Gorniak M (2017) Load sharing in ship microgrids under nonsinusoidal conditions—case study. IEEE Trans Energy Convers 32(2):810–819. https://doi.org/10.1109/TEC.2017.2691803

    Article  Google Scholar 

  19. Liu J, Miura Y, Bevrani H, Ise T (2017) Enhanced virtual synchronous generator control for parallel inverters in microgrids. IEEE Trans Smart Grid 8(5):2268–2277. https://doi.org/10.1109/TSG.2016.2521405

    Article  Google Scholar 

  20. Zhong QC, Weiss G (2009) Static synchronous generators for distributed generation and renewable energy. In: Proceedings of the 2009 IEEE/PES power systems conference and exposition, Seattle, WA, USA, 15–18 March, pp 1–6

  21. Wang S, Hu J, Yuan X, Sun L (2015) On inertial dynamics of virtual-synchronous-controlled DFIG-based wind turbines. IEEE Trans Energy Convers 30:1691–1702

    Article  Google Scholar 

  22. Zhong QC, Weiss G (2011) Synchronverters: inverters that mimic synchronous generators. IEEE Trans Ind Electron 58:1259–1267

    Article  Google Scholar 

  23. Arani MFM, El-Saadany EF (2013) Implementing virtual inertia in DFIG-based wind power generation. IEEE Trans Power Syst 28:1373–1384

    Article  Google Scholar 

  24. Guan M, Pan W, Zhang J, Hao Q, Cheng J, Zheng X (2015) Synchronous generator emulation control strategy for voltage source converter (VSC) stations. IEEE Trans Power Syst 30:3093–3101

    Article  Google Scholar 

  25. Paquette AD, Divan DM (2015) Virtual impedance current limiting for inverters in microgrids with synchronous generators. IEEE Trans Ind Appl 51:1630–1638

    Article  Google Scholar 

  26. Liu J, Miura Y, Ise T (2016) Comparison of dynamic characteristics between virtual synchronous generator and droop control in inverter-based distributed generators. IEEE Trans Power Electron 31:3600–3611

    Article  Google Scholar 

  27. Wu H, Yang D, Chen X, Zhao W, Lv Z, Zhong QC (2016) Small-signal modeling and parameters design for virtual synchronous generators. IEEE Trans Ind Electron 63:4292–4303

    Article  Google Scholar 

  28. Ketabi A, Rajamand SS, Shahidehpour M (2017) Power sharing in parallel inverters with different types of loads. IET Gener Transm Distrib 11(10):2438–2447. https://doi.org/10.1049/iet-gtd.2016.0570

    Article  Google Scholar 

  29. Bansal RC, Bhatti TS, Kothari DP (2004) Automatic reactive power control of isolated wind-diesel hybrid power systems for variable wind speed/slip. Electric Power Compon Syst 32(9):901–912

    Article  Google Scholar 

  30. Sun Y, Hou X, Yang J, Han H, Su M, Guerrero JM (2017) New perspectives on droop control in AC microgrid. IEEE Trans Ind Electron 64(7):5741–5745

    Article  Google Scholar 

  31. Khaledian A, Golkar MA (2017) Analysis of droop control method in an autonomous microgrid. J Appl Res Technol 15(4):371–377

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sahbasadat Rajamand.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajamand, S. Synchronous Generator Control Concept and Modified Droop for Frequency and Voltage Stability of Microgrid Including Inverter-Based DGs. J. Electr. Eng. Technol. 15, 1035–1044 (2020). https://doi.org/10.1007/s42835-020-00383-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42835-020-00383-z

Keywords

Navigation