Skip to main content
Log in

Reproducing Kernel Method for Solving Nonlinear Oscillators Under Damping Effect

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions A: Science Aims and scope Submit manuscript

Abstract

The current paper is devoted to introducing a semi-analytical technique for the numerical solution of nonlinear oscillators under the damping effect by using the reproducing kernel Hilbert space method. The proposed scheme is a hybrid of the reproducing kernel Hilbert space and the perturbation methods. This method finds solutions to periodic and nonlinear problems by converting to a system of linear differential equations. Finally, some test problems are given to illustrate the validity of the novel algorithm. Also, the presented numerical results using the method are compared with the numerical solutions of the fourth-order Runge–Kutta method. The numerical results reported show that the present method can provide very accurate approximate solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abbasbandy S, Azarnavid B (2016) Some error estimates for the reproducing kernel Hilbert spaces method. J Comput Appl Math 296:789–797

    Article  MathSciNet  MATH  Google Scholar 

  • Abdelhafez H (2016) Solution of excited non-linear oscillators under damping effects using the modified differential transform method. Mathematics 4:11. https://doi.org/10.3390/math4010011

    Article  MATH  Google Scholar 

  • Ahmadian M, Mojahedi M, Moeenfard H (2009) Free vibration analysis of a nonlinear beam using homotopy and modified LindstedtPoincaré methods. J Solid Mech 1:29–36

    Google Scholar 

  • Aronszajn N (1950) Theory of reproducing kernel. AMS Trans 68:337–404

    Article  MathSciNet  MATH  Google Scholar 

  • Azarnavid B, Shivanian E, Parand K, Nikmanesh S (2018) Multiplicity results by shooting reproducing kernel Hilbert space method for the catalytic reaction in a flat particle. J Theor Comput Chem 17(02):1850020

    Article  Google Scholar 

  • Babolian E, Saeidian J, Azizi A (2009) Application of homotopy perturbation method to solve non-linear problems. Appl Math Sci 3:2215–2226

    MathSciNet  MATH  Google Scholar 

  • Babolian E, Javadi S, Moradi E (2016) RKM for solving Bratu-type differential equations of fractional order. Math Methods Appl Sci 39:1548–1557

    Article  MathSciNet  MATH  Google Scholar 

  • Babolian E, Javadi S, Moradi E (2016) Error analysis of reproducing kernel Hilbert space method for solving functional integral equations. J Comput Appl Math 300:300–311

    Article  MathSciNet  MATH  Google Scholar 

  • Bakhtiari-Nejad F, Nazari M (2009) Nonlinear vibration analysis of isotropic cantilever plate with viscoelastic laminate. Nonlinear Dyn 56:325–356

    Article  MATH  Google Scholar 

  • Beléndez A, Bernabeua G, Francés J, Méndeza D, Marini S (2010) An accurate closed-form approximate solution for the quintic Duffing oscillator equation. Math Comput Model 52:637–641

    Article  MathSciNet  MATH  Google Scholar 

  • Cartwright M (1952) Van der Pols equation for relaxation oscillations. Contributions to the theory of nonlinear oscillations II. Princeton annals of mathematics studies, vol 2. Princeton University Press, Princeton, p 318

    Google Scholar 

  • Cartwright M (1960) Balthazar van der Pol. J Lond Math Soc 35:367–376

    Article  MathSciNet  MATH  Google Scholar 

  • Chen Z, Lin Y (2008) The exact solution of a linear integral equation with weakly singular kernel. J Math Anal Appl 344:726–734

    Article  MathSciNet  MATH  Google Scholar 

  • Chen Z, Zhou Y (2011) A new method for solving Hilbert type singular integral equations. Appl Math Comput 218:406–412

    MathSciNet  MATH  Google Scholar 

  • Cui M, Lin Y (2009) Nonlinear numerical analysis in reproducing kernel Hilbert space. Nova Science Publisher, New York

    MATH  Google Scholar 

  • Du H, Shen J (2008) Reproducing kernel method of solving singular integral equation with cosecant kernel. J Math Anal Appl 348:308–314

    Article  MathSciNet  MATH  Google Scholar 

  • Fardi M, Ghaziani R, Ghasemi M (2016) The reproducing kernel method for some variational problems depending on indefinite integrals. Math Model Anal 21(3):412–429

    Article  MathSciNet  Google Scholar 

  • Feki M (2003) Observer-based exact synchronization of ideal and mismatched chaotic systems. Phys Lett A 309:53–60

    Article  MathSciNet  MATH  Google Scholar 

  • Geng F, Cui M (2007) Solving singular nonlinear second-order periodic boundary value problems in the reproducing kernel space. Appl Math Comput 192:389–398

    MathSciNet  MATH  Google Scholar 

  • Geng F, Cui M (2008) Solving singular nonlinear two-point boundary value problems in the reproducing kernel space. J Korean Math Soc 45(3):631–644

    Article  MathSciNet  MATH  Google Scholar 

  • Geng F, Qian S (2013) Reproducing kernel method for singularly perturbed turning point problems having twin boundary layers. Appl Math Lett 26:998–1004

    Article  MathSciNet  MATH  Google Scholar 

  • Ghasemi M, Fardi M, Ghaziani R (2015) Numerical solution of nonlinear delay differential equations of fractional order in reproducing kernel Hilbert space. Appl Math Comput 268:815–831

    MathSciNet  MATH  Google Scholar 

  • Guckenheimer J, Holmes P (1983) Nonlinear oscillations, dynamical systems and bifurcations of vector fields. Springer, New York

    Book  MATH  Google Scholar 

  • He J (1999) Homotopy perturbation technique. Comput Methods Appl Mech Eng 178:257–262

    Article  MathSciNet  MATH  Google Scholar 

  • Isfahani F, Mokhtari R, Loghmani G, Mohammadi M (2018) Numerical solution of some initial optimal control problems using the reproducing kernel Hilbert space technique. Int J Control 95:1–8

    MATH  Google Scholar 

  • Jalilvand A, Fotoohabadi H (2011) The application of Duffing oscillator in weak signal detection. ECTI Trans Electr Eng Electron Commun 9(1):1–6

    Google Scholar 

  • Ketabchi R, Mokhtari R, Babolian E (2015) Some error estimates for solving Volterra integral equations by using the reproducing kernel method. J Comput Appl Math 273:245–250

    Article  MathSciNet  MATH  Google Scholar 

  • Li X, Wu B (2015) A numerical technique for variable fractional functional boundary value problems. Appl Math Lett 43:108–113

    Article  MathSciNet  MATH  Google Scholar 

  • Li X, Wu B (2017) A new reproducing kernel method for variable order fractional boundary value problems for functional differential equations. J Comput Appl Math 311:387–393

    Article  MathSciNet  MATH  Google Scholar 

  • Logan J (2006) Applied mathematics. Wiley, New York

    MATH  Google Scholar 

  • Maimistov A (2000) Some models of propagation of extremely short electromagnetic pulses in a nonlinear medium. Quantum Electron 30:287–304

    Article  Google Scholar 

  • Maimistov A (2003) Propagation of an ultimately short electromagnetic pulse in a nonlinear medium described by the fifth-order Duffing model. Opt Spectrosc 94:251–257

    Article  Google Scholar 

  • Marzban H, Razzaghi M (2003) Numerical solution of the controlled Duffing oscillator by hybrid functions. Appl Math Comput 140:179–190

    MathSciNet  MATH  Google Scholar 

  • Mohammadi M, Mokhtari R (2011) Solving the generalized regularized long wave equation on the basis of a reproducing kernel space. J Comput Appl Math 235:4003–4014

    Article  MathSciNet  MATH  Google Scholar 

  • Mohammadi M, Zafarghandi F, Babolian E, Jvadi S (2018) A local reproducing kernel method accompanied by some different edge improvement techniques: application to the Burgers-equation. Iran J Sci Technol Trans Sci 42:857. https://doi.org/10.1007/s40995-016-0113-9

    Article  MathSciNet  MATH  Google Scholar 

  • Moradi E, Babolian E, Javadi S (2015) The explicit formulas for reproducing kernel of some Hilbert spaces. Miskolc Math Notes 16(2):1041–1053

    Article  MathSciNet  MATH  Google Scholar 

  • Nayfeh A (1973) Perturbation methods. Wiley, New York

    MATH  Google Scholar 

  • Nayfeh A (1981) Introduction to perturbation techniques. Wiley, New York

    MATH  Google Scholar 

  • Nayfeh A, Mook D (1979) Nonlinear oscillations. Wiley, New York

    MATH  Google Scholar 

  • Nhat L (2018) Using differentiation matrices for pseudospectral method solve Duffing oscillator. J Nonlinear Sci Appl 11:1331–1336

    Article  MathSciNet  MATH  Google Scholar 

  • Rad J, Kazem S, Parand K (2012) A numerical solution of the nonlinear controlled Duffing oscillator by radial basis functions. Comput Math Appl 64:2049–2065

    Article  MathSciNet  MATH  Google Scholar 

  • Ravindra B, Mallik A (1998) Dissipative control of chaos in non-linear vibrating systems. J Sound Vib 211:709–715

    Article  MathSciNet  MATH  Google Scholar 

  • Srinil N, Zanganeh H (2012) Modeling of coupled cross-flow/in-line vortex-induced vibrations using double Duffing and van der Pol oscillators. Ocean Eng 53:83–97

    Article  Google Scholar 

  • Stokes J (1950) Nonlinear vibrations. Intersciences, New York

    Google Scholar 

  • Stumpers F (1960) Balth van der Pols work on nonlinear circuits. IRE Trans Circuit Theory 7:366–367

    Article  MathSciNet  Google Scholar 

  • Van der Pol B (1920) A theory of the amplitude of free and forced triode vibrations. Radio Rev 1:701–710

    Google Scholar 

  • Van der Pol B (1926) Relaxation oscillations I. Philos Mag 2:978–992

    Article  Google Scholar 

  • Van der Pol B (1934) The nonlinear theory of electric oscillations. Proc IRE 22:1051–1086

    Article  MATH  Google Scholar 

  • Wang G, Zhenga W, He S (2002) Estimation of amplitude and phase of a weak signal by using the property of sensitive dependence on initial conditions of a nonlinear oscillator. Signal Process 82:103–115

    Article  Google Scholar 

  • Wang W, Cui M, Han B (2008) A new method for solving a class of singular two-point boundary value problems. Appl Math Comput 206:721–727

    MathSciNet  MATH  Google Scholar 

  • Yulan W, Chaolu T, Jing P (2009) New algorithm for second-order boundary value problems of integro-differential equation. J Comput Appl Math 229:1–6

    Article  MathSciNet  MATH  Google Scholar 

  • Yusufoğlu E (2006) Numerical solution of Duffing equation by the Laplace decomposition algorithm. Appl Math Comput 177:572–580

    MathSciNet  MATH  Google Scholar 

  • Zeeman E (1976) Duffing equation in brain modelling. Bull IMA 12:207–214

    MathSciNet  Google Scholar 

  • Zhihong Z, Shaopu Y (2015) Application of Van der Pol–Duffing oscillator in weak signal detection. Comput Electr Eng 41:1–8

    Article  Google Scholar 

Download references

Acknowledgements

This article has been supported by Kharazmi University and Iran National Science Foundation (INSF). The authors thank both institutions for their good support during this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farhad Moradi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moradi, F., Javadi, S. Reproducing Kernel Method for Solving Nonlinear Oscillators Under Damping Effect. Iran J Sci Technol Trans Sci 44, 763–772 (2020). https://doi.org/10.1007/s40995-020-00868-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40995-020-00868-6

Keywords

Navigation