Skip to main content
Log in

Temporal Variation of Earth-Based Gravitational Constant Measurements

  • Published:
Gravitation and Cosmology Aims and scope Submit manuscript

Abstract

As one knows, strong discrepancies are found between the different precise measurements of the gravitational constant carried out in Earth-based laboratories. While the precision is increasing in different laboratories and with various methods, these measurements are even more and more discordant. We have shown since 2002 that an improved 5D Kaluza-Klein (KK) theory may provide a satisfactory explanation to these discrepancies by referring to the geomagnetic field as a possible cause. Here we take advantage of different precise measurements performed on the same location but at different epoch to address the temporal variation of the gravitational constant measurements. It turns out that taking into account the secular variation of the geomagnetic potential introduces a greater consistency into the apparent lack of concordance amongst the most precise gravitational constant measurements. Indeed, we obtain results that are in good agreement with all laboratory measurements. Moreover, this study yields an independent way to derive the coupling constant of the internal 5D KK scalar field to the electromagnetic field, namely, F−1 = (3.25 ± 0.35) × 10−14 m/J, which matches quite well with the earlier one, F-1 = (3.40 ± 0.41) × 10−14 m/J.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. P. Mbelek and M. Lachiè ze-Rey, Grav. Cosmol. 8, 331 (2002).

    ADS  Google Scholar 

  2. V. P. Izmailov et al., Meas. Techniques 36, 1065 (1993).

    Article  Google Scholar 

  3. C. H. Bagley and G. G. Luther, Phys. Rev. Lett. 78, 3047 (1997).

    Article  ADS  Google Scholar 

  4. J. P. Schwarz et al., Science 282, 2230 (1998).

    Article  ADS  Google Scholar 

  5. O. V. Karagioz, V. P. Izmaylov, and G. T. Gillies, Grav. Cosmol. 4, 239 (1998).

    ADS  Google Scholar 

  6. J.-Cl. Dousse and Ch. Rheme, Am. J. Phys. 55, 706 (1987).

    Article  ADS  Google Scholar 

  7. J. D. Anderson, G. Schubert, V. Trimble, and M. R. Feldman, Euro Phys. Lett. 110, 10002 (2015)

    Article  ADS  Google Scholar 

  8. J. D. Anderson, G. Schubert, V. Trimble, and M. R. Feldman, Euro Phys. Lett. 111, 30003 (2015).

    Article  ADS  Google Scholar 

  9. S. Schlamminger, J. H. Gundlach, and R. D. Newman, Phys. Rev. D 91, 121101(R) (2015).

  10. L. Iorio, Class. Quantum Grav. 33, 045004 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  11. M. Pitkin, Euro Phys. Lett. 111, 30002 (2015).

    Article  ADS  Google Scholar 

  12. S. Desai, Euro Phys. Lett. 115, 20006 (2016).

    Article  ADS  Google Scholar 

  13. F. Scholkmann and O. D. Sieber, Euro Phys. Lett. 113, 20001 (2016).

    Article  ADS  Google Scholar 

  14. J. H. Gundlach and S. M. Merkowitz, Phys. Rev. Lett. 85, 2869 (2000).

    Article  ADS  Google Scholar 

  15. Q. Li et al., Nature 560, 582 (2018).

    Article  ADS  Google Scholar 

  16. C. Brans and R. H. Dicke, Phys. Rev. 124, 925 (1961).

    Article  ADS  MathSciNet  Google Scholar 

  17. L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields (Addison-Wesley, Reading, Massachusetts, 1959), 2nd ed., Section 11-3, pp. 289–293.

    Google Scholar 

  18. P. D. Noerdlinger, Phys. Rev. 170, 1175 (1968).

    Article  ADS  Google Scholar 

  19. J. P. Mbelek, in The Gravitational Constant: Generalized Gravitational Theories and Experiments, Ed. by V. de Sabbata, G. Gillies, and V. N. Melnikov, pp. 233–245.

  20. J. P. Mbelek, Grav. Cosmol. 21, 340 (2015).

    Article  ADS  Google Scholar 

  21. F O. Minotti, Grav. Cosmol. 19, 201 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  22. F O. Minotti, Grav. Cosmol. 23, 287 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  23. J. P. Mbelek, Astron. Astroph. 424, 761 (2004).

    Article  ADS  Google Scholar 

  24. J. P. Mbelek and M. Lachieze-Rey, Astron. Astroph. 397, 803 (2003).

    Article  ADS  Google Scholar 

  25. A. Rathke, Grav. Cosmol. 10, 224 (2004).

    ADS  Google Scholar 

  26. J. P. Mbelek, Grav. Cosmol. 10, 233 (2004).

    ADS  Google Scholar 

  27. T. A. Wagner et al., Class. Quantum Grav. 29, 184002 (2012).

    Article  ADS  Google Scholar 

  28. P. Touboul et al., Phys. Rev. Lett. 119, 231101 (2017).

    Article  ADS  Google Scholar 

  29. J. P. Mbelek, to appear.

  30. E. Thebault et al., HAL Id: insu-01412375, International Geomagnetic Reference Field: the 12th generation (2016); https://www.ngdc.noaa.gov/IAGA/vmod/IGRF12coeffs.xls

    Google Scholar 

  31. Z.-K. Hu, Phys. Rev. D 71, 127505 (2005).

    Article  ADS  Google Scholar 

  32. Liang-Cheng Tu et al., Phys. Rev. D 82, 022001 (2010).

    Article  ADS  Google Scholar 

  33. S.-Q. Yang, private communication.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mbelek, J.P. Temporal Variation of Earth-Based Gravitational Constant Measurements. Gravit. Cosmol. 25, 250–258 (2019). https://doi.org/10.1134/S0202289319030083

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0202289319030083

Navigation