Skip to main content
Log in

A STUDY OF TRANSIENT FLOWS WITH INTERFACES USING NUMERICAL SOLUTION OF NAVIER–STOKES EQUATIONS

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

Flows of two immisible fluids are considered taking into account the capillary and gravity forces. The flow is described using a viscous incompressible fluid model within a two-dimensional formulation. The Navier–Stokes equations are solved numerically by an extended finite-element method, which allows for the presence of a strong discontinuity on the interface. The interface location is tracked using the level set method. This approach makes it possible to study flows with a varying topology of the interface. The calculation results are presented for the problems of a rising 2D bubble, development of the Rayleigh–Taylor instability, and a film flowing down a vertical wall in an extended region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFRENCES

  1. N. Moës, J. Dolbow, and T. Belytschko, “A finite element method for crack growth without remeshing,” Int. J. Numer. Meth. Eng. 46 (1), 131–150 (1999). https://doi.org/10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J

    Article  MathSciNet  MATH  Google Scholar 

  2. T.P. Fries, “The intrinsic XFEM for two-fluid flows,” Int. J. Numer. Methods Fluids 60, (4), 437–471 (2009). https://doi.org/10.1002/fld.1901

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. T.P. Fries and T. Belytschko, “The extended/generalized finite element method: An overview of the method and its applications,” Int. J. Numer. Meth. Eng. 84 (3), 253–304 (2010). https://doi.org/10.1002/nme.2914

    Article  MathSciNet  MATH  Google Scholar 

  4. H. Sauerland, An XFEM Based Sharp Interface Approach for Two-Phase and Free-Surface Flows (Diss. RWTH Aachen, 2013).

  5. H. Sauerland and T.P. Fries, “The extended finite element method for two-phase and free-surface flows: A systematic study,” J. Comput. Phys. 230 (9), 3369–3390 (2011). https://doi.org/10.1016/j.jcp.2011.01.033

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. S. Osher and R.P. Fedkiw, “Level set methods: An overview and some recent results,” J. Comput. Phys. 169 (2), 463–502 (2001). https://doi.org/10.1006/jcph.2000.6636

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. T.J.R. Hughes, L.P. Franca and G.M. Hulbert, “A new finite element formulation for computational fluid dynamics: VIII. The Galerkin/least-squares method for advective-diffusive equations,” Comput. Methods in Appl. Mech. Eng. 73 (2), 173–189 (1989). https://doi.org/10.1016/0045-7825(89)90111-4

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. I. Babuška and U. Banerjee, “Stable generalized finite element method (SGFEM),” Comput. Methods in Appl. Mech. Eng. 201–204, 91–111 (2012). https://doi.org/10.1016/j.cma.2011.09.012

  9. A.I. Aleksyuk and V.Y. Shkadov, “Analysis of three-dimensional transition mechanisms in the near wake behind a circular cylinder,” Eur. J. Mech. B/Fluids 72, 456–466 (2018). https://doi.org/10.1016/j.euromechflu.2018.07.011

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. A.I. Aleksyuk and A.N. Osiptsov, “Direct numerical simulation of energy separation effect in the near wake behind a circular cylinder,” Int. J. Heat Mass Transfer 119, 665–677 (2018). https://doi.org/10.1016/j.ijheatmasstransfer.2017.11.133

    Article  Google Scholar 

  11. A.I. Aleksyuk, “Influence of vortex street structure on the efficiency of energy separation,” Int. J. Heat Mass Transfer 135, 284–293 (2019). https://doi.org/10.1016/j.ijheatmasstransfer.2019.01.103

    Article  Google Scholar 

  12. S. Hysing, S. Turek, D. Kuzmin, et al., “Quantitative benchmark computations of two-dimensional bubble dynamics,” Int. J. Numer. Methods Fluids 60 (11), 1259–1288 (2009). https://doi.org/10.1002/fld.1934

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. N. Grenier, M. Antuono, A. Colagrossi, et al., “An Hamiltonian interface SPH formulation for multi-fluid and free surface flows,” J. Comput. Phys. 228 (22), 8380–8393 (2009). https://doi.org/10.1016/j.jcp.2009.08.009

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. V.Y. Shkadov, “Wave flow regimes of a thin layer of viscous fluid subject to gravity,” Fluid Dynamics 2 (1), 29–34 (1967).

    Article  ADS  MathSciNet  Google Scholar 

  15. S. Kalliadasis, C. Ruyer-Quil, B. Scheid, and M.G. Velarde, “Falling liquid films,” Applied mathematical sciences (Springer London, London), 2012, vol. 176. https://doi.org/10.1007/978-1-84882-367-9

  16. T. Nosoko and A. Miyara, “The evolution and subsequent dynamics of waves on a vertically falling liquid film,” Phys. Fluids 16 (4), 1118–1126 (2004). https://doi.org/10.1063/1.1650840

    Article  ADS  MATH  Google Scholar 

  17. A.N. Beloglazkin, V.Y. Shkadov, and A.E. Kulago, “Limiting wave regimes uring the spatial and temporal development of disturbances in falling liquid films,” Moscow University Mechanics Bulletin 74 (3), 69–73 (2019).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. I. Aleksyuk or V. Ya. Shkadov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aleksyuk, A.I., Shkadov, V.Y. A STUDY OF TRANSIENT FLOWS WITH INTERFACES USING NUMERICAL SOLUTION OF NAVIER–STOKES EQUATIONS. Fluid Dyn 55, 314–322 (2020). https://doi.org/10.1134/S0015462820030015

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462820030015

Keywords:

Navigation