Skip to main content
Log in

The Impact of No-Till, Conservation, and Conventional Tillage Systems on Erosion and Soil Properties in Lower Austria

  • DEGRADATION, REHABILITATION, AND CONSERVATION OF SOILS
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The effect of long-term (about 25 years) use of different farming practices on a set of soil properties and development of erosion in Lower Austria has been studied. Three tillage systems—zero, or no-till (NT); minimum, or conservation (CS); and conventional (CV)—are compared. The comparison demonstrates that the properties of Typic Argiudols (Luvic Phaeozems), formed on steep (13.2%) slopes, change depending on both the tillage type and the position on the slope. Unlike the CV tillage, the soil-saving technologies provide higher contents of nutrients, silt, and clay, as well as better water permeability and water stability of soil aggregates. Despite an almost doubled amount of lumpy fractions (>10 mm), the soil aggregate states after NT and CS tillage are estimated as “excellent”. Independently of the tillage system, all agrochemical, electrophysical, and hydrophysical parameters (except for pH and bulk density) increase downward the slope, which is associated with erosion, namely, the washout of suspended sediments by water flows. The Corg content in the soil tightly correlates with the water stability of soil aggregates (r = 0.91), the concentration of soluble humic substances and fine solids (SAK; r = 0.76), and electroconductivity (r = 0.75). An anti-erosion efficiency of tillage practice increases in the series CV–CS–NT. The NT or CS systems are recommended for the erosion-prone slopes of Alpine foothills.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. A. N. Vlasenko, N. G. Vlasenko, and N. A. Korotkikh, “Problems and prospects of the development and use of no-till method on forest-steppe chernozems in Western Siberia,” Dostizh. Nauki Tekh. APK, No. 9, 16–19 (2013).

    Google Scholar 

  2. I. M. Gabbasova, R. R. Suleimanov, T. T. Garipov, M. A. Komissarov, L. V. Sidorova, N. F. Galimzyanova, P. Liebelt, E. V. Abakumov, G. A. Gimaletdinova, and Z. G. Prostyakova, “The use of local fertilizers supplemented with Trichoderma koningii Oudem. at no-till and conventional tillage of agrochernozem in Southern Urals,” S-kh. Biol. 53, 1004–1012 (2018). https://doi.org/10.15389/agrobiology.2018.5.1004rus

    Article  Google Scholar 

  3. I. M. Gabbasova, R. R. Suleimanov, I. K. Khabirov, M. A. Komissarov, T. T. Garipov, L. V. Sidorova, I. G. Asylbaev, B. V. Rafikov, and R. B. Yaubasarov, “Assessment of the agrochernozem status in the Trans-Ural steppe under application of no-till management system,” Russ. Agric. Sci. 41, 34–39 (2015). https://doi.org/10.3103/S1068367415010061

    Article  Google Scholar 

  4. I. M. Gabbasova, R. R. Suleimanov, I. K. Khabirov, M. A. Komissarov, M. Fruehauf, P. Liebelt, T. T. Garipov, L. V. Sidorova, and F. Kh. Khaziev, “Temporal changes of eroded soils depending on their agricultural use in the southern Cis-Ural region,” Eurasian Soil Sci. 49, 1204–1210 (2016). https://doi.org/10.1134/S1064229316100070

    Article  Google Scholar 

  5. A. A. Zavalin, V. K. Dridiger, V. P. Belobrov, and S. A. Yudin, “Nitrogen in chernozems under traditional and direct seeding cropping systems: a review,” Eurasian Soil Sci. 51, 1497–1506 (2018). https://doi.org/10.1134/S1064229318120141

    Article  Google Scholar 

  6. M. A. Komissarov and I. M. Gabbasova, “Erosion of agrochernozems under sprinkler irrigation and rainfall simulation in the southern forest-steppe of Bashkir Cis-Ural region,” Eurasian Soil Sci. 50, 253–261 (2017). https://doi.org/10.1134/S1064229317020077

    Article  Google Scholar 

  7. M. A. Komissarov and I. M. Gabbasova, “Snowmelt-induced soil erosion on gentle slopes in the southern Cis-Ural region,” Eurasian Soil Sci. 47, 598–607 (2014). https://doi.org/10.1134/S1064229314060039

    Article  Google Scholar 

  8. M. A. Komissarov and S. Ogura, “The efficiency of moldboard plowing upon deactivation and rehabilitation of radioactively contaminated pastures in the North of Japan,” Eurasian Soil Sci. 51, 947–954 (2018). https://doi.org/10.1134/S1064229318080057

    Article  Google Scholar 

  9. G. A. Larionov, N. G. Dobrovol’skaya, Z. P. Kiryukhina, S. F. Krasnov, L. F. Litvin, A. V. Gorobets, and I. I. Sudnitsyn, “Effect of soil density, tensile strength, and water infiltration on the rupture rate of interaggregate bonds,” Eurasian Soil Sci. 50, 335–340 (2017). https://doi.org/10.1134/S1064229317010094

    Article  Google Scholar 

  10. I. I. Lebedeva, Yu. I. Cheverdin, T. V. Titova, A. M. Grebennikov, and L. G. Markina, “Structural state of migrational-mycelial (typical) agrochernozems of the Kamennaya Steppe on plowed fields of different ages,” Eurasian Soil Sci. 50, 218–228 (2017). https://doi.org/10.1134/S1064229317020090

    Article  Google Scholar 

  11. S. D. Litsukov, A. I. Titovskaya, A. V. Akinchin, and A. N. Segidin, “Microbiological activity of soil in various systems of land agriculture,” Vestn. Kursk. Gos. S-kh. Akad., No. 8, 57–60 (2013).

  12. A. I. Pozdnyakov, P. I. Eliseev, and L. A. Pozdnyakov, “Electrophysical approach to assessing some cultivation and fertility elements of coarse-textured soils in the humid zone,” Eurasian Soil Sci. 48, 726–734 (2015). https://doi.org/10.1134/S1064229315050063

    Article  Google Scholar 

  13. T. A. Trofimova, S. I. Korzhov, V. A. Gulevskii, and V. N. Obraztsov, “Assessing the degree of physical degradation and suitability of chernozems for the minimization of basic tillage,” Eurasian Soil Sci. 51, 1080–1085 (2018). https://doi.org/10.1134/S1064229318090120

    Article  Google Scholar 

  14. N. P. Chekaev, T. A. Vlasova, and E. O. Kochmina, “Dynamics of agrophysical indicators of leached chernozem and crop yield of winter wheat during implementation of no-till method,” Niva Povolzh’ya, No. 2 (35), 74–79 (2015).

    Google Scholar 

  15. K. O. Adekalu, D. A. Okunade, and J. A. Osunbitan, “Compaction and mulching effects on soil loss and runoff from two southwestern Nigeria agricultural soils,” Geoderma 137, 226–230 (2006). https://doi.org/10.1016/j.geoderma.2006.08.012

    Article  Google Scholar 

  16. P. Cepuder, G. Kammerer, R. Nolz, and S. Strohmeier, Applied Soil Physics, LV-Nr. 815306; Physical and Selected Chemical Methods of Soil Analysis, LV-Nr. 815313 (University of Natural Resources and Life Sciences, Vienna, 2011)). manualzz.com/doc/4710797/lv-nr.-815306-applied-soil-physics-lv.

    Google Scholar 

  17. F. Attou, A. Bruand, and Y. Le Bissonnais, “Effect of clay content and silt-clay fabric on stability of artificial aggregates,” Eur. J. Soil Sci. 49, 569–577 (1998). https://doi.org/10.1046/j.1365-2389.1998.4940569.x

    Article  Google Scholar 

  18. H. Belaid and H. Habaieb, “Soil aggregate stability in a Tunisian semi-arid environment with reference to fractal analysis,” J. Soil Sci. Environ. Manage. 6, 16–23 (2015). https://doi.org/10.5897/JSSEM2012.0360

    Article  Google Scholar 

  19. L. Edwards, J. R. Burney, G. Richter, and A. H. MacRae, “Evaluation of compost and straw mulching on soil-loss characteristics in erosion plots of potatoes in Prince Edward Island, Canada,” Agric., Ecosyst. Environ. 81, 217–222 (2000). https://doi.org/10.1016/S0167-8809(00)00162-6

    Article  Google Scholar 

  20. R. Fernandez, I. Frasier, E. Noellemeyer, and A. Quiroga, “Soil quality and productivity under zero tillage and grazing on Mollisols in Argentina—A long-term study,” Geoderma 11, 44–52 (2017). https://doi.org/10.1016/j.geodrs.2017.09.002

    Article  Google Scholar 

  21. L. Gao, B. Wang, S. Li, H. Wu, X. Wu, G. Liang, D. Gong, X. Zhang, D. Cai, and A. Degre, “Soil wet aggregate distribution and pore size distribution under different tillage systems after 16 years in the Loess Plateau of China,” Catena 173, 38–47 (2019). https://doi.org/10.1016/j.catena.2018.09.043

    Article  Google Scholar 

  22. V. C. Girardello, T. J. C. Amado, R. S. Nicoloso, T. A. N. Horbe, A. O. Ferreira, F. M. Tabaldi, and M. E. Lanzanova, “Changes in physical properties of a red oxisol and of soybean yield under no-tillage affected by chisel plow types,” Rev. Bras. Cienc. Solo 35, 2115–2126 (2011). https://doi.org/10.1590/S0100-06832011000600026

    Article  Google Scholar 

  23. Z. Gozubuyuk, U. Sahin, I. Ozturk, A. Celik, and M. C. Adiguzel, “Tillage effects on certain physical and hydraulic properties of a loamy soil under a crop rotation in a semi-arid region with a cool climate,” Catena 118, 195–205 (2014). https://doi.org/10.1016/j.catena.2014.01.006

    Article  Google Scholar 

  24. M. L. Himmelbauer, M. Sobotik, and W. Loiskandl, “No-tillage farming, soil fertility and maize root growth,” Arch. Agron. Soil Sci. 58 (11), 151–157 (2012). https://doi.org/10.1080/03650340.2012.695867

    Article  Google Scholar 

  25. R. Hosl and P. Strauss, “Conservation tillage practices in the alpine forelands of Austria—Are they effective?” Catena 137, 44–51 (2016). https://doi.org/10.1016/j.catena.2015.08.009

    Article  Google Scholar 

  26. J. L. Jensen, P. Schjonning, C. W. Watts, B. T. Christensen, C. Peltre, and L. J. Munkholm, “Relating soil C and organic matter fractions to soil structural stability,” Geoderma 337, 834–843 (2019). https://doi.org/10.1016/j.geoderma.2018.10.034

    Article  Google Scholar 

  27. A. Jordan, L. M. Zavala, and J. Gil, “Effects of mulching on soil physical properties and runoff under semi-arid conditions in southern Spain,” Catena 81, 77–85 (2010). https://doi.org/10.1016/j.catena.2010.01.007

    Article  Google Scholar 

  28. M. S. Kahlon, R. Lal, and M. A. Varughese, “Twenty-two years of tillage and mulching impacts on soil physical characteristics and carbon sequestration in Central Ohio,” Soil Tillage Res. 126, 151–158 (2013). https://doi.org/10.1016/j.still.2012.08.001

    Article  Google Scholar 

  29. E. Kandeler and E. Murer, “Aggregate stability and soil processes in a soil with different cultivation,” Geoderma 56, 503–513 (1993). https://doi.org/10.1016/0016-7061(93)90130-D

    Article  Google Scholar 

  30. L. W. Kimberlin, A. L. Hidlebaugh, and A. R. Grunewald, “The potential wind erosion problem in the United States,” Trans. Am. Soc. Agric. Eng. 20, 873–879 (1977).

    Article  Google Scholar 

  31. A. Klik, “Einfluss unterschiedlicher bodenbearbeitung auf oberflachenabfluss, bodenabtrag sowie auf nahrstoff- und pestizidaustrage,” Oesterr. Wasser- Abfallwirtsch. 55, 89–96 (2003).

  32. A. Klik and J. Eitzinger, “Impact of climate change on soil erosion and the efficiency of soil conservation practices in Austria,” J. Agric. Sci. 148, 529–541 (2010). https://doi.org/10.1017/S0021859610000158

    Article  Google Scholar 

  33. A. Klik and S. M. Strohmeier, “Reducing soil erosion by using sustainable soil management systems,” Wasserwirtschaft 101 (9), 20–24 (2011).

    Article  Google Scholar 

  34. I. Kuhling, D. Redozubov, G. Broll, and D. Trautz, “Impact of tillage, seeding rate and seeding depth on soil moisture and dryland spring wheat yield in Western Siberia,” Soil Tillage Res. 170, 43–52 (2017). https://doi.org/10.1016/j.still.2017.02.009.35

  35. N. K. Lenka and R. Lal, “Soil aggregation and greenhouse gas flux after 15 years of wheat straw and fertilizer management in a no-till system,” Soil Tillage Res. 126, 78–89 (2013). https://doi.org/10.1016/j.still.2012.08.011.

  36. P. Liebelt, M. Fruhauf, R. Suleymanov, M. Komissarov, D. Yumaguzhina, and R. Galimova, “Causes, consequences and opportunities of the post-Soviet land use changes in the forest-steppe zone of Bashkortostan,” GEO-ÖKO 36, 77–111 (2015.

    Google Scholar 

  37. S. S. Malhi, A. Legere, A. Vanasse, and G. Parent, “Effects of long-term tillage, terminating no-till and cropping system on organic C and N, and available nutrients in a gleysolic soil in Quebec, Canada,” J. Agric. Sci. 156, 472–480 (2018). https://doi.org/10.1017/S0021859618000448

    Article  Google Scholar 

  38. M. J. Morrison, E. R. Cober, E. G. Gregorich, H. D. Voldeng, B. Ma, and G. C. Topp, “Tillage and crop rotation effects on the yield of corn, soybean, and wheat in eastern Canada,” Can. J. Plant Sci. 98 (1), 183–191 (2018). https://doi.org/10.1139/cjps-2016-0407

    Article  Google Scholar 

  39. L. N. Mulumba and R. Lal, “Mulching effects on selected soil physical properties,” Soil Tillage Res. 98, 106–111 (2008). https://doi.org/10.1016/j.still.2007.10.011

    Article  Google Scholar 

  40. J. L. Myers and M. G. Wagger, “Runoff and sediment loss from three tillage systems under simulated rainfall,” Soil Tillage Res. 39, 115–129 (1996). https://doi.org/10.1016/S0167-1987(96)01041-0

    Article  Google Scholar 

  41. R. W. Neugschwandtner, H. P. Kaul, P. Liebhard, and H. Wagentristl, “Winter wheat yields in a long-term tillage experiment under Pannonian climate conditions,” Plant, Soil Environ. 61, 145–150 (2015). https://doi.org/10.17221/820/2014-PSE

    Article  Google Scholar 

  42. R. W. Neugschwandtner, P. Liebhard, H. P. Kaul, and H. Wagentristl, “Soil chemical properties as affected by tillage and crop rotation in a long-term field experiment,” Plant, Soil Environ. 6, 57–62 (2014). https://doi.org/10.17221/879/2013-PSE

    Article  Google Scholar 

  43. J. Rosner, E. Zwatz, A. Klik, and C. Gyuricza, “Conservation tillage systems–soil–nutrient–and herbicide loss in lower Austria and the mycotoxin problem,” in Proceedings of the 15th International Congress of ISCO (Geographical Research Institute, Budapest, 2008).

  44. G. Scholz, J. N. Quinton, and P. Strauss, “Soil erosion from sugar beet in Central Europe in response to climate change induced seasonal precipitation variations,” Catena 72, 91–105 (2008). https://doi.org/10.1016/j.catena.2007.04.005

    Article  Google Scholar 

  45. F. A. M. Silva, K. Naudin, M. Corbeels, E. Scopel, and F. Affholder, “Impact of conservation agriculture on the agronomic and environmental performances of maize cropping under contrasting climatic conditions of the Brazilian Cerrado,” Field Crops Res. 230, 72–83 (2019). https://doi.org/10.1016/j.fcr.2018.10.009

    Article  Google Scholar 

  46. N. J. Sithole, L. S. Magwaza, and G. R. Thibaud, “Long-term impact of no-till conservation agriculture and N-fertilizer on soil aggregate stability, infiltration and distribution of C in different size fractions,” Soil Tillage Res. 190, 147–156 (2019). https://doi.org/10.1016/j.still.2019.03.004

    Article  Google Scholar 

  47. K. Skaalsveen, J. Ingram, and L. E. Clarke, “The effect of no-till farming on the soil functions of water purification and retention in north-western Europe: a literature review,” Soil Tillage Res. 189, 98–109 (2019)). https://doi.org/10.1016/j.still.2019.01.004

    Article  Google Scholar 

  48. L. H. C. Souza, E. D. S. Matos, C. A. D. S. Magalhaes, E. R. de la Torre, F. M. Lamas, and R. Lal, “Soil carbon and nitrogen stocks and physical properties under no-till and conventional tillage cotton-based systems in the Brazilian Cerrado,” Land Degrad. Dev. 29 (10), 3405–3412 (2018). https://doi.org/10.1002/ldr.3105

    Article  Google Scholar 

  49. W. Stalzer, “Rahmenbedingungen fur eine gewasservertragliche Landbewirtschaftung,” in Gewasservertragliche Landbewirtschaftung. Konsequenzen fur die Land-, Forst- und Wasserwirtschaft. Schriftenreihe des Bundesamtes fur Wasserwirtschaft (Bundesamt für Wasserwirtschaft, St. Lorenz, 1995), Vol. 1, pp. 1–24.

  50. P. Strauss and E. Klaghofer, “Austria,” in Soil Erosion in Europe (Wiley, Chichester, 2006), pp. 205–212.

    Google Scholar 

  51. S. Strohmeier, G. Laaha, H. Holzmann, and A. Klik, “Magnitude and occurrence probability of soil loss: a risk analytical approach for the plot scale for two sites in Lower Austria,” Land Degrad. Dev. 27, 43–51 (2016). https://doi.org/10.1002/ldr.2354

    Article  Google Scholar 

  52. M. W. Strudley, T. R. Green, and J. C. Ascough, “Tillage effects on soil hydraulic properties in space and time: state of the science,” Soil Tillage Res. 99, 4–48 (2008). https://doi.org/10.1016/j.still.2008.01.007

    Article  Google Scholar 

  53. Modeling Soil Erosion, Sediment Transport and Closely Related Hydrological Processes, Ed. by W. Summer, E. Klaghofer, and W. Zhang (International Association of Hydrological Sciences, Wallingford, 1998), Vol. 249.

    Google Scholar 

  54. A. Vaezi, S. Eslami, and S. Keesstra, “Interrill erodibility in relation to aggregate size class in a semi-arid soil under simulated rainfalls,” Catena 167, 385–398 (2018). https://doi.org/10.1016/j.catena.2018.05.003

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank M. Faulhammer for the assistance in agrochemical assays and F. Forster for the help in the Laboratory of Soil Physics. We are especially grateful to I.M. Gabbasova and T.T. Garipov for valuable advice.

Funding

This study was supported by the Austrian Agency for International Cooperation in Education and Research (OeAD) under the “Ernst Mach” Grant and by the Ministry of Education and Science of the Russian Federation (section no. AAAA-A18-118022190102-3, project no. 075-00326-19-00).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Komissarov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by G. Chirikova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Komissarov, M.A., Klik, A. The Impact of No-Till, Conservation, and Conventional Tillage Systems on Erosion and Soil Properties in Lower Austria. Eurasian Soil Sc. 53, 503–511 (2020). https://doi.org/10.1134/S1064229320040079

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229320040079

Keywords:

Navigation