Skip to main content
Log in

Microbial Biomass, Carbon Stocks, and CO2 Emission in Soils of Franz Josef Land: High-Arctic Tundra or Polar Deserts?

  • SOIL BIOLOGY
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The biomass of prokaryotes and fungi, organic carbon stocks, and CO2 emission were studied in the Cryosols and Leptosols of Franz Josef Land. The highest carbon stocks were found in the Eutric Leptosols (Loamic, Humic) formed in the wind-sheltered areas (23.2 kg C/m2 in the upper 50 cm), as well as in Turbic Cryosols (Humiс) that contained organic matter buried by cryoturbation (13.7–20.7 kg C/m2). The number of prokaryotes varied between 0.14 and 2.10 billion cells/g of soil, and the maximum values of their biomass were found in the litter. The fungal biomass varied from tens to hundreds of mg/g of soil depending on the type of soil and biotope. The share of spores was more than a half of the total fungal biomass in 80% of cases. Spores and mycelium were mainly represented by small forms with a diameter of up to 2–3 microns. The length of the fungal mycelium ranged from 4 to 272 m/g of soil. The maximum development of fungi was observed in the lichen biocrusts and moss litters. The fungal biomass decreased exponentially with the depth of horizons, and at the same time the share of prokaryotes in microbial biomass increased by several times. The share of microbial carbon in the total organic carbon was higher in soils of barrens (the most extreme habitats among the studied ones) as compared with the soils of local tundra areas (12.7 versus 2.5%, respectively). The levels of СО2 emission from the surface of undisturbed soils varied in the range of 1.6–91.7 mg C–CО2/m2 per hour and differed by tens of times between barrens and tundra areas. The studied soils are close to the soils of the Arctic tundra when compared by their carbon stocks and CO2 emission values; however, their microbial biomass values and their distribution are close to the soils of Antarctica and hot deserts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. E. N. Bab’eva and T. P. Sizova, “Micromycetes in soils of arctic tundra ecosystems,” Pochvovedenie, No. 10, 98 (1983).

    Google Scholar 

  2. E. A. Vorob’eva, A. A. Belov, V. S. Cheptsov, V. S. Soina, M. O. Kryuchkova, E. S. Kapaevskaya, and A. E. Ivanova, “Tolerance of microorganisms of extreme xerophytic ecotopes to the impact of inactivating factors,” Izv. Timiryazevsk. S-kh. Akad., No. 4, 111–127 (2018). https://doi.org/10.26897/0021-342X-2018-4-111-127

  3. Yu. S. Vishnevaya and L. F. Popova, “Evaluation of ecological state and heavy metal pollution degree of Arctic soils,” Vestn. Mosk. Gos. Obl. Univ., Ser. Estestv. Nauki, No. 2, 96–104 (2016). https://doi.org/10.18384/2310-7189-2016-2-96-104

    Article  Google Scholar 

  4. S. V. Goryachkin, Soil Cover of the North: Structure, Genesis, Ecology, and Evolution (GEOS, Moscow, 2010) [in Russian].

  5. S. V. Goryachkin, S. V. Lyubova, and T. V. Levandovskaya, “Soil-geochemical features of the coastal and island geosystems in extreme conditions of Arctic,” in Materials of the Complex Scientific-Educational Expedition “Arctic Floating University–2015”, Ed. by K. S. Zaikov, D. Yu. Polikin, and L. N. Drachkova (Northern (Arctic) Federal University, Arkhangelsk, 2015), pp. 35–59. narfu.ru/university/library/books/ 2810.pdf.

  6. S. V. Goryachkin, A. V. Dolgikh, and N. S. Mergelov, “Soils of Franz Joseph Land: geography, morphogenetic features, classification, and role in carbon cycle,” in Materials of the Multiple Scientific-Educational Expedition “Arctic Floating University–2015” (Kira, Arkhangelsk, 2017), pp. 15–36. narfu.ru/university/library/books/.

  7. T. G. Dobrovol’skaya, D. G. Zvyagintsev, I. Yu. Chernov, A. V. Golovchenko, G. M. Zenova, L. V. Lysak, N. A. Manucharova, O. E. Marfenina, L. M. Polyanskaya, A. L. Stepanov, and M. M. Umarov, “The role of microorganisms in the ecological functions of soils,” Eurasian Soil Sci. 48, 959–967 (2015). https://doi.org/10.1134/S1064229315090033

    Article  Google Scholar 

  8. G. A. Evdokimova, N. P. Mozgova, and V. A. Myazin, “Physicochemical and microbiological characteristics of tundra soils on the Rybachii Peninsula,” Eurasian Soil Sci. 51, 81–88 (2018). https://doi.org/10.1134/S1064229318010064

    Article  Google Scholar 

  9. O. N. Ezhov, M. V. Gavrilo, and M. V. Zmitrovich, “Fungi of the Franz Joseph Land Archipelago,” Tr. Kol’sk. Nauchn. Tsentra, Ross. Akad. Nauk, No. 4, 23 (2014);

    Google Scholar 

  10. D. G. Zvyagintsev, Practical Manual on Soil Microbiology and Biochemistry (Moscow State University, Moscow, 1991), p. 60.

    Google Scholar 

  11. T. I. Ivanova, N. P. Kuz’mina, and A. P. Isaev, “A microbiological characterization of the permafrost soil of the Tit-Ary Island (Yakutia),” Contemp. Probl. Ecol. 5, 589–596 (2012).

    Article  Google Scholar 

  12. D. V. Karelin and D. G. Zamolodchikov, Carbon Exchange in Cryogenic Ecosystems (Nauka, Moscow, 2008) [in Russian].

    Google Scholar 

  13. D. V. Karelin, S. V. Goryachkin, D. G. Zamolodchikov, A. V. Dolgikh, E. P. Zazovskaya, V. A. Shishkov, and G. N. Kraev, “Human footprints on greenhouse gas fluxes in cryogenic ecosystems,” Dokl. Earth Sci. 477, 1467–1469 (2017). https://doi.org/10.1134/S1028334X17120133

    Article  Google Scholar 

  14. D. V. Karelin, E. P. Zazovskaya, V. A. Shishkov, A. V. Dolgikh, A. A. Sirin, G. G. Suvorov, A. I. Azovskii, and N. I. Osokin, “Monitoring of CO2 fluxes in Svalbard: land use alters the gas exchange in the Arctic tundra,” Izv. Ross. Akad. Nauk, Ser. Geogr., No. 5, 56–66 (2019). https://doi.org/10.31857/S2587-55662019556-6

    Article  Google Scholar 

  15. I. Yu. Kirtsideli, “Soil and ground micromycetes from the Northeastern Land Island (Spitsbergen Archipelago),” Mikol. Fitopatol. 44 (2), 116–125 (2010).

    Google Scholar 

  16. I. Yu. Kirtsideli, “Microscopic fungi in soils of the Heiss Island (Franz Josef Land),” Nov. Sist. Nizshikh Rast. 49, 151–160 (2015).

    Article  Google Scholar 

  17. I. Yu. Kirtsideli, E. V. Abakumov, Sh. B. Teshebaev, M. S. Zelenskaya, D. Yu. Vlasov, V. A. Krylenkov, V. T. Sokolov, and E. P. Barantsevich, “Microbial communities in the area of Arcic settlements,” Gig. Sanit. 95 (10), 923–929 (2016). https://doi.org/10.1882/0016-9900-2016-10-923-929

    Article  Google Scholar 

  18. L. L. Shishov, V. D. Tonkonogov, I. I. Lebedeva, and M. I. Gerasimova, Classification and Diagnostic System of Russian Soils (Oikumena, Smolensk, 2004) [in Russian].

    Google Scholar 

  19. A. G. Kudinova, L. V. Lysak, V. S. Soina, N. S. Mergelov, A. V. Dolgikh, and I. G. Shorkunov, “Bacterial communities in the soils of cryptogamic barrens of East Antarctica (the Larsemann Hills and Thala Hills oases),” Eurasian Soil Sci. 44, 276–287 (2015). https://doi.org/10.1134/S1064229315030072

    Article  Google Scholar 

  20. O. V. Kutovaya, E. S. Vasilenko, and M. P. Lebedeva, “Microbiological and micromorphological characteristics of extremely arid desert soils in the Ili Depression (Kazakhstan),” Eurasian Soil Sci. 45, 1147–1158 (2012).

    Article  Google Scholar 

  21. S. V. Lyubova and B. V. Lyubova, “Chemical properties of soils of the Arctic islands of Arkhangelsk oblast,” in Proceedings of XIV All-Russia Scientific-Practical Conference “Biodiagnostics of Natural and Natural-Technogenic Systems” (Raduga-Press, Kirov, 2016), pp. 294–298.

  22. L. V. Lysak and T. G. Dobrovo;’skaya, “Bacteria in tundra soils of Western Taimyr,” Pochvovedenie, No. 9, 74–78 (1982).

    Google Scholar 

  23. L. V. Lysak, I. A. Maksimova, D. A. Nikitin, A. E. Ivanova, A. G. Kudinova, V. S. Soina, and O. E. Marfenina, “Soil microbial communities of Eastern Antarctica,” Moscow Univ. Biol. Sci. Bull. 73, 104–112 (2018).

    Article  Google Scholar 

  24. O. E. Marfenina, D. A. Nikitin, and A. E. Ivanova, “The structure of fungal biomass and diversity of cultivated micromycetes in Antarctic soils (Progress and Russkaya Stations),” Eurasian Soil Sci. 49, 934–941 (2016). https://doi.org/10.1134/S106422931608007X

    Article  Google Scholar 

  25. N. V. Matveeva, L. L. Zanokha, O. M. Afonina, A. D. Patova, D. A. Davydov, V. M. Andreeva, M. P. Zhurbenko, L. A. Konoreva, I. V. Zmitrovich, O. N. Ezhov, A. G. Shiryaev, and I. Yu. Kirtsideli, The Plants and Fungi of Polar Deserts of Northern Hemisphere (Komarov Botanical Institute, Russian Academy of Sciences, St. Petersburg, 2015) [in Russian].

    Google Scholar 

  26. I. S. Mikhailov, “Soils,” in Soviet Arctic (Nauka, Moscow, 1970), pp. 236–249 [in Russian].

    Google Scholar 

  27. I. S. Mikhailov and L. S. Govorukha, “Soils of Franz Josef Land,” Vestn. Mosk. Univ., Ser. 5: Geogr., No. 6, 42–48 (1962).

  28. National Atlas of the Arctic (Roskartografiya, Moscow, 2017) [in Russian].

  29. D. A. Nikitin, O. E. Marfenina, A. G. Kudinova, L. V. Lysak, N. S. Mergelov, A. V. Dolgikh, and A. V. Lupachev, “Microbial biomass and biological activity of soils and soil-like bodies in coastal oases of Antarctica,” Eurasian Soil Sci. 50, 1086–1097 (2017). https://doi.org/10.1134/S1064229317070079

    Article  Google Scholar 

  30. D. A. Nikitin, M. V. Semenov, A. A. Semikolennykh, I. A. Maksimova, A. V. Kachalkin, and A. E. Ivanova, “Biomass of fungi and species diversity of cultured microbiota of soil and substrates of the Northbrook Island (Franz Josef Land),” Mikol. Fitopatol. 53 (4), 219–231 (2019).

    Google Scholar 

  31. L. M. Polyanskaya and D. G. Zvyagintsev, “The content and composition of microbial biomass as an index of the ecological status of soil,” Eurasian Soil Sci. 38, 625–633 (2005).

    Google Scholar 

  32. V. S. Soina, A. G. Gazimullina, N. S. Mergelov, L. V. Lysak, and E. V. Lapygina, “Bacterial complexes in soils of humid valleys of Larsemann Hills oasis (Eastern Antarctica),” Al’m. Sovrem. Nauki Obraz., No. 9, 195–200 (2012).

  33. V. S. Cheptsov, E. A. Vorob’eva, L. M. Polyanskaya, M. V. Gorlenko, A. K. Pavlov, and V. N. Lomasov, “Resistance of soil microbial communities to the impact of physical factors of surface layer of Martian regolith,” in Microbial Communities in Evolution of Biosphere from Ancient Times until Present (Moscow, 2017), pp. 179–191.

  34. N. D. Ananyeva, S. Castaldib, E. V. Stolnikova, V. N. Kudeyarova, and R. Valentini, “Fungi-to-bacteria ratio in soils of European Russia,” Arch. Agron. Soil Sci. 61 (4), 427–446 (2014). https://doi.org/10.1080/03650340.2014.940916

    Article  Google Scholar 

  35. T. H. Anderson and K. H. Domsch, “Ratios of microbial biomass carbon to total organic carbon in arable soils,” Soil Biol. Biochem. 21 (4), 471–479 (1989).

    Article  Google Scholar 

  36. S. V. Ayuso, A. G. Silva, C. Nelson, N. N. Barger, and F. Garcia-Pichel, “Microbial nursery production of high-quality biological soil crust biomass for restoration of degraded dryland soils,” Appl. Environ. Microbiol. 83 (3), e02179-16 (2017). https://doi.org/10.1128/AEM.02179-16

    Article  Google Scholar 

  37. S. Bay, B. Ferrari, and C. Greening, “Life without water: how do bacteria generate biomass in desert ecosystems?” Microbiol. Austral., 28–32 (2018). https://doi.org/10.1071/MA18008

  38. A. A. Belov, V. S. Cheptsov, and E. A. Vorobyova, “Soil bacterial communities of Sahara and Gibson deserts: physiological and taxonomical characteristics,” AIMS Microbiol. 4 (4), 685–710 (2018). https://doi.org/10.3934/microbiol.2018.4.685

    Article  Google Scholar 

  39. A. A. Belov, V. S. Cheptsov, E. A. Vorobyova, N. A. Manucharova, and Z. S. Ezhelev, “Stress-tolerance and taxonomy of culturable bacterial communities isolated from a central Mojave Desert soil sample,” Geosciences 9, 166–190 (2019). https://doi.org/10.3390/geosciences9040166

    Article  Google Scholar 

  40. R. Bergero, M. Girlanda, G. C. Varese, D. Intili, and A. M. Luppi, “Psychrooligotrophic fungi from Arctic soils of Franz Joseph Land,” Polar Biol. 21 (6), 361–368 (1999).

    Article  Google Scholar 

  41. A. Dolgikh, N. Mergelov, A. Ivaschenko, I. Shorkunov, A. Pochikalov, and D. Karelin, “Carbon dioxide emission and carbon stocks in natural and anthropogenically-changed soils of the Larsemann Hills oasis, East Antarctica,” in Proceedings of the International Conf. “Earth’s Cryosphere: Past, Present and Future,” Pushchino, Russia, June 4–8,2017 (Pushchino, 2017), pp. 150–151.

  42. B. Elberling, E. G. Gregorich, D. W. Hopkins, A. D. Sparrow, P. Novis, and L. G. Greenfield, “Distribution and dynamics of soil organic matter in an Antarctic dry valley,” Soil Biol. Biochem. 38, 3095–3106 (2006). https://doi.org/10.1016/j.soilbio.2005.12.011

    Article  Google Scholar 

  43. J. C. Frisvad, “Fungi in cold ecosystems,” in Psychrophiles: From Biodiversity to Biotechnology (Springer-Verlag, Berlin, 2008), pp. 137–156.

    Google Scholar 

  44. E. G. Gregorich, D. W. Hopkins, B. Elberling, A. D. Sparrow, P. Novis, L. G. Greenfield, and P. Rochette, “Emission of CO2, CH4 and N2O from lakeshore soils in an Antarctic dry valley,” Soil Biol. Biochem. 38 (10), 3120–3129 (2006). https://doi.org/10.1016/j.soilbio.2006.01.015

    Article  Google Scholar 

  45. N. Hassan, M. Rafiq, M. Hayat, A. A. Shah, and F. Hasan, “Psychrophilic and psychrotrophic fungi: a comprehensive review,” Rev. Environ. Sci. Biotechnol. 15 (2), 147–172 (2016). https://doi.org/10.1007/s11157-016-9395-9

    Article  Google Scholar 

  46. IUSS Working Group WRB, World Reference Base for Soil Resources 2014, Update 2015 International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, World Soil Resources Reports No. 106 (UN Food and Agriculture Organization, Rome, 2015).

  47. A. Koyama, M. D. Wallenstein, R. T. Simpson, and J. C. Moore, “Soil bacterial community composition altered by increased nutrient availability in Arctic tundra soils,” Front. Microbiol. 5, 516 (2014). https://doi.org/10.3389/fmicb.2014.00516

    Article  Google Scholar 

  48. A. A. Malik, S. Chowdhury, V. Schlager, A. Oliver, J. Puissant, P. G. Vazquez, M. Bergen, N. Jehmlich, R. Griffis, and G. Gleixner, “Soil fungal: bacterial ratios are linked to altered carbon cycling,” Front. Microbiol. 7, 1247 (2016). https://doi.org/10.3389/fmicb.2016.01247

    Article  Google Scholar 

  49. M. Nikitina, L. Popova, J. Korobitcina, O. Efremova, A. Trofimova, E. Nakvasina, and A. Volkov, “Environmental status of the arctic soils,” J. Elementol. 20 (3), 643–651 (2015). https://doi.org/10.5601/jelem.2014.19.4.743

    Article  Google Scholar 

  50. S. B. Pointing and J. Belnap, “Microbial colonization and controls in dryland systems,” Nat. Rev. Microbiol. 10 (8), 551–562 (2012). https://doi.org/10.1038/nrmicro2831

    Article  Google Scholar 

  51. N. Schmidt and M. Bölter, “Fungal and bacterial biomass in tundra soils along an arctic transect from Taimyr Peninsula, central Siberia,” Polar Biol. 25 (12), 871–877 (2002). https://doi.org/10.1007/s00300-002-0422-7

    Article  Google Scholar 

  52. L. Selbmann, G. S. De Hoog, L. Zucconi, D. Isola, and S. Onofri, Black Yeasts in Cold Habitats (Springer-Verlag, Berlin, 2014), pp. 173–190. https://doi.org/10.1007/978-3-642-39681-6_8

    Book  Google Scholar 

  53. S. A. Sistla, J. C. Moore, R. T. Simpson, L. Gough, G. R. Shaver, and J. P. Schimel, “Long-term warming restructures Arctic tundra without changing net soil carbon storage,” Nature 497 (7451), 615 (2013). https://doi.org/10.1038/nature12129

    Article  Google Scholar 

  54. Y. Steinberger and S. Sarig, “Response by soil nematode populations and the soil microbial biomass to a rain episode in the hot, dry Negev Desert,” Biol. Fertil. Soils 16, 188–192 (1993). https://doi.org/10.1007/BF00361406

    Article  Google Scholar 

  55. K. Sterflinger, D. Tesei, and K. Zakharova, “Fungi in hot and cold deserts with particular reference to microcolonial fungi,” Fungal Ecol. 5 (4), 453–462 (2012). https://doi.org/10.1016/j.funeco.2011.12.007

    Article  Google Scholar 

  56. I. Timling, D. A. Walker, C. Nusbaum, N. J. Lennon, and D. L. Taylor, “Rich and cold: diversity, distribution and drivers of fungal communities in patterned-ground ecosystems of the North American Arctic,” Mol. Ecol. 23 (13), 3258–3272 (2014). https://doi.org/10.1111/mec.12743

    Article  Google Scholar 

  57. D. A. Walker, S. M. Frost, I. Timling, M. K. Raynolds, G. V. Matyshak, G. V. Frost, H. E. Epstein, M. Zhurbenko, and O. Afonina, “Biological soil crusts of Hayes Island, Franz Josef Land, Russia: high cover, biomass and NDVI,” in Proceedings of the Tenth International Conference on Permafrost, Salekhard, Yamal-Nenets Autonomous District, Russia, June 25–29,2012 (Salekhard, 2012), Vol. 4, pp. 634–635.

  58. S. Vishnevetsky and Y. Steinberger, “Bacterial and fungal dynamics and their contribution to microbial biomass in desert soil,” J. Arid Environ. 37 (1), 83–90 (1997). https://doi.org/10.1006/jare.1996.0250

    Article  Google Scholar 

  59. X. Xu, P. E. Thornton, and W. M. Post, “A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems,” Global Ecol. Biogeogr. 22 (6), 737–749 (2013). https://doi.org/10.1111/geb.12029

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the project “Arctic Floating University” initiated by the Lomonosov Northern Аrctic Federal University and personally to K.S. Zaikov for the organization of field works on Franz Josef Land. The authors are also thankful to junior research A.V. Pochikalov from the Laboratory of Radiocarbon Dating and Electron Microscopy of the Institute of Geography, Russian Academy of Sciences, for analytical determination of the contents of carbon and nitrogen in the soil samples.

Funding

This study was supported by the Russian Geographical Society and Russian Foundation for Basic Research, project no. 17-05-41157 RGS_a (field studies); the Russian Foundation for Basic Research, project RFBR-Arctica no. 18-05-60279 (microbiological analyses) and project no. 17-04-01475 (determination of the contents of elements); and by the state contract no. 0148-2019-0006 (calculation of carbon stocks and analytical synthesis of materials for the “Results and Discussion” section).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Nikitin.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by D. Konyushkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikitin, D.A., Lysak, L.V., Mergelov, N.S. et al. Microbial Biomass, Carbon Stocks, and CO2 Emission in Soils of Franz Josef Land: High-Arctic Tundra or Polar Deserts?. Eurasian Soil Sc. 53, 467–484 (2020). https://doi.org/10.1134/S1064229320040110

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229320040110

Keywords:

Navigation