Skip to main content
Log in

Rhizoliths in Devonian and Early Carboniferous Paleosols and Their Paleoecological Interpretation

  • GENESIS AND GEOGRAPHY OF SOILS
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract—

Collected in situ rhizoliths (>20) from Devonian and Early Carboniferous paleosols in the southern part of the Russian Platform (Kaluga, Belgorod, and Voronezh oblasts) were studied by means of scanning electron microscopy, X-ray diffraction, XRF and mass spectrometry. In Devonian paleosols developed from volcanic–sedimentary deposits, rhizoliths are represented by petrified individual roots of different plants, rooting systems, and their diagenetically transformed products—ferruginous concretions and wedges. Mineralogically, they are dominated by goethite and siderite in different proportions. Some of them include charcoals and/or pyrite-substituted plant tissues. This kind of rhizoliths was developed under reducing conditions in (semi)hydromorphic paleosols or under flooding during the soil burial stage. In the Carboniferous period, paleosols developed from marine limestones contained several types of rhizoliths: casts (predominate), imprints and root channels (less abundant), and few rhizocretions with arbuscular mycorrhiza. All of them are characterized by complete mineralization of plant tissues. Casts and rhizocretions are substituted with calcite. The isotopic composition of C in the latter is within –5.68 < δ13C < –1.16‰. The data obtained show that rhizoliths are important sources of information on biodiversity, physiology of plants, and paleoenvironments at different scales, including the global scale. The volume of information depends on the type of rhizolith.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. T. V. Alekseeva, A. O. Alekseev, and S. V. Gubin, “Paleosol complex in the uppermost Mikhailovian horizon (Viséan, Lower Carboniferous) in the southern flank of the Moscow Syneclise,” Paleontol. J. 50, 319–335 (2016).

    Article  Google Scholar 

  2. T. V. Alekseeva, A. O. Alekseev and P. I. Kalinin, “The Mississippian paleosols in the Brontsy Quarry, Kaluga region,” Eurasian Soil Sci. 51, 744–757(2018).

    Article  Google Scholar 

  3. P. A. Beznosov, S. M. Snigirevskii, S. V. Naugol’nykh, and E. V. Lukshevich, “Upper Devonian deposit complex of the delta plain in Northern Timan,” Vestn. Inst. Geol., Komi Nauchn. Tsentr, Ural. Otd., Ross. Akad. Nauk, No. 1, 25–44 (2018). https://doi.org/10.19110/2221-1381-2018-1-25-44

    Article  Google Scholar 

  4. N. S. Bortnikov, V. M. Novikov, A. D. Savko, N. M. Boeva, E. A. Zhegallo, E. B. Bushueva, A. V. Krainov, and D. A. Dmitriev, “Structural-morphological features of kaolinite from clayey rocks subjected to different stages of lithogenesis: evidence from the Voronezh anteclise,” Lithol. Miner. Resour. 48, 384–397 (2013).

    Article  Google Scholar 

  5. V. A. Golubtsov, O. S. Khokhlova, and A. A. Cherkashina, “Carbonate rhizoliths in dune sands of the Belaya River valley (Upper Angara region),” Eurasian Soil Sci. 52, 83–93 (2019).

    Article  Google Scholar 

  6. D. G. Zavarzina, Candidate’s Dissertation in Geology-Mineralogy (Moscow, 2001) [in Russian].

  7. S. A. Inozemtsev and V. A. Targulian, Upper Permian Paleosols: Properties and Formation Conditions (GEOS, Moscow, 2010) [in Russian].

    Google Scholar 

  8. S. A. Inozemtsev, S. V. Naugolnykh, and E. Yu. Yakimenko, “Upper Permian paleosols developed from limestone in the middle reaches of the Volga River: morphology and genesis,” Eurasian Soil Sci. 44, 604–617 (2011).

    Article  Google Scholar 

  9. P. B. Kabanov, T. V. Alekseeva, and A. O. Alekseev, “Serpukhovian stage (Carboniferous) in type area: sedimentology, mineralogy, geochemistry, and section correlation,” Stratigr. Geol. Correl. 20, 15–41 (2012).

    Article  Google Scholar 

  10. Moseichik, Yu.V., Early Carboniferous Flora of Moscow Region, Vol. 1: Composition, Ecology, Evolution, Phytogeographic Relations and Stratigraphic Role (GEOS, Moscow, 2009) [in Russian].

  11. S. V. Naugol’nykh, “New member of genus Radicites Potonie from Upper Devonian deposits of Russia,” in Prehistoric. Paleontological Heritage: Study and Conservation (Media-Grand, Moscow, 2015), pp. 31–40 [in Russian].

  12. Ya. G. Ryskov, A. A. Velichko, V. I. Nikolaev, S. A. Oleinik, S. N. Timireva, V. P. Nechaev, P. G. Panin, and T. D. Morozova, “Reconstruction of the paleotemperature and precipitation in the Pleistocene according to the isotope composition of humus and carbonates in loess on the Russian Plain,” Eurasian Soil Sci. 41, 937–945 (2008).

    Article  Google Scholar 

  13. N. S. Snigirevskaya, “Root systems of the Archeopteris in the Upper Devonian of Donbass,” Ezhegodn. Vses. Paleontol. O-va, No. 27, 28–41 (1984) [in Russian].

    Google Scholar 

  14. S. M. Snigirevskii, L. S. Kocheva, P. A. Beznosov, and M. A. Pavlova, “Northern Timan as one of ancient coal regions of the Earth,” in Proceedings of All-Russian Conference “Natural Geological Heritage of European North of Russia” (Syktyvkar, 2017), pp. 77–80 [in Russian].

  15. T. A. Sokolova, I. I. Tolpeshta, L. V. Lysak, Yu. A. Zavgorodnyaya, T. S. Chalova, M. M. Karpukhin, and Yu. G. Izosimova, “Biological characteristics and concentrations of extractable Fe, Al, and Si compounds in spruce rhizosphere in podzolic soil,” Eurasian Soil Sci. 51, 1317–1325 (2018).

    Article  Google Scholar 

  16. T. A. Sokolova, I. I. Tolpeshta, I. V. Danilin, Yu. G. Izosimova, and T. S. Chalova, “Acid–base characteristics and clay mineralogy in the rhizospheres of Norway maple and common spruce and in the bulk mass of podzolic soil,” Eurasian Soil Sci. 52, 707–717 (2019).

    Article  Google Scholar 

  17. G. I. Teodorovich, Authigenic Sedimentary Minerals (Academy of Sciences of USSR, Moscow, 1958) [in Russian].

    Google Scholar 

  18. A. P. Feofilova, “Concretions in fossil soils of Permian-Carbonaceous deposits of Donetsk basin and their relation with climate,” Litol. Polezn. Iskop., No. 5, 67–74 (1972) [in Russian].

  19. M. S. Shvetsov, “Stratigraphy of Lower Carboniferous deposits of the southern flank of Moscow Basin,” Vestn. Mosk. Gorn. Akad. 1 (2), 223–242 (1922) [in Russian].

    Google Scholar 

  20. I. Kh. Shumilov, “Preservation conditions of in situ root systems in Devonian sections of the middle Timan region,” Lithol. Miner. Resour. 48, 65–73 (2013).

    Article  Google Scholar 

  21. T. V. Alekseeva, A. O. Alekseev, S. V. Gubin, P. B. Kabanov, and V. A. Alekseeva, “Palaeoenvironments of the Middle-Late Mississippian Moscow Basin (Russia) from multiproxy study of palaeosols and palaeokarsts,” Palaeogeogr., Palaeoclimatol., Palaeoecol. 450, 1–16 (2016). https://doi.org/10.1016/j.palaeo.2016.02.030

    Article  Google Scholar 

  22. T. Alekseeva, P. Kabanov, A. Alekseev, P. Kalinin, and V. Alekseeva, “Characteristics of early Earth’s critical zone based on Middle-Late Devonian palaeosols properties (Voronezh High, Russia),” Clays Clay Miner. 64 (5), 677–694 (2016). https://doi.org/10.1346/CCMN.2016.064044

    Article  Google Scholar 

  23. M. P. Aref’ev and S. V. Naugolnykh, “Fossil roots from the upper Tatarian deposits in the basin of the Sukhona and Malaya Severnaya Dvina rivers: stratigraphy, taxonomy and paleoecology,” Paleontol. J. 32 (1), 82–96 (1998).

    Google Scholar 

  24. M. D. Cramer and H. J. Hawkins, “A physiological mechanism for the formation of root casts,” Palaeogeogr., Palaeoclimatol., Palaeoecol. 274, 125–133 (2009).

    Article  Google Scholar 

  25. G. L. Foster, D. L. Royer, and D. J. Lunt, “Future climate forcing potentially without precedent in the last 420 million years,” Nat. Commun. 8, 14845 (2017).

    Article  Google Scholar 

  26. N. B. Gibshman, P. B. Kabanov, A. S. Alekseev, et al., “Novogurovsky quarry: Upper Visean and Serpukhovian, in type and reference Carboniferous sections in the south part of the Moscow basin,” in Field Trip Guidebook of International IUSC Field Meeting. August 11–12,2009 (Moscow, 2009), pp. 13–44.

  27. L. A. Harrier, “The arbuscular mycorrhizal symbiosis: a molecular review of the fungal dimension,” J. Exp. Bot. 52 (1), 469–478 (2001).

    Article  Google Scholar 

  28. D. L. Jones, A. Hodge, and Ya. Kuzyakov, “Plant and mycorrhizal regulation of rhizodeposition,” New Phytol. 163, 459–480 (2004).

    Article  Google Scholar 

  29. P. B. Kabanov, T. V. Alekseeva, V. A. Alekseeva, A. O. Alekseev, and S. V. Gubin, “Paleosols in Late Moscovian (Carboniferous) marine carbonates of the East European craton revealing “great calcimagnesian plain” paleolandscapes,” J. Sediment. Res. 80, 195–215 (2010).

    Article  Google Scholar 

  30. V. N. Kholodov and G. Yu. Butuzova, “Siderite formation and evolution of sedimentary iron ore deposits in the Earth’s history,” Geol. Ore Deposits 50 (4), 299–319 (2008).

    Article  Google Scholar 

  31. C. F. Klappa, “Rhizoliths in terrestrial carbonates: classification, recognition, genesis and significance,” Sedimentology 27, 613–629 (1980).

    Article  Google Scholar 

  32. M. J. Kraus and S. T. Hasiotis, “Significance of different modes of rhizolith preservation to interpreting paleoenvironmental and paleohydrologic settings: examples from Paleogene paleosols, Bighorn basin, Wyoming, USA,” J. Sediment. Res. 76, 633–646 (2006).

    Article  Google Scholar 

  33. D. L. Nascimento, A. Batezelli, and F. S. B. Ladeira, “The paleoecological and paleoenvironmental importance of root traces: plant distribution and topographic significance of root patterns in Upper Cretaceous paleosols,” Catena 172, 789–806 (2019).

    Article  Google Scholar 

  34. S. V. Naugolnykh, “Upper Cretaceous paleosols of the Bain-Dzak section, southern Mongolia,” Paleontol. J. 50 (12), 1451–1469 (2016).

    Article  Google Scholar 

  35. S. R. Passey, “The habit and origin of siderite spherules in the Eocene coal-bearing Prestfjall Formation, Faroe Islands,” Int. J. Coal Geol. 122, 76–90 (2014).

    Article  Google Scholar 

  36. J. A. Raven and D. Edwards, “Roots: evolutionary origins and biogeochemical significance,” J. Exp. Bot. 52, 381–401 (2001).

    Article  Google Scholar 

  37. G. J. Retallack, Soils of the Past: An Introduction to Paleopedology (Blackwell, Malden, 2001).

    Book  Google Scholar 

  38. G. J. Retallack and C. Huang, “Ecology and evolution of Devonian trees in New York, USA,” Palaeogeogr., Palaeoclimatol., Palaeoecol. 299, 110–128 (2011).

    Article  Google Scholar 

  39. D. L. Royer, R. A. Berner, I. P. Montanez, N. J. Tabor, and D. J. Beerling, “CO2 as a primary driver of Phanerozoic climate,” GSA Today 4 (3), 4–10 (2004).

    Article  Google Scholar 

  40. I. Kh. Shumilov, “Gleization and paleosoils in Devonian red rocks of the Middle Timan region,” Lithol. Miner. Res. 49 (4), 308–319 (2014).

    Article  Google Scholar 

  41. Q. Sun, H. Wang, and K. Zamanian, “Radiocarbon age discrepancies between the carbonate cement and the root relics of rhizoliths from the Badain Jaran and the Tengeri deserts, Northwest China,” Catena 180, 263–270 (2019).

    Article  Google Scholar 

  42. N. J. Tabor and T. S. Myers, “Paleosols as indicators of paleoenvironment and paleoclimate,” Annu. Rev. Earth Planet. Sci. 43, 11.1–11.29 (2015).

  43. G. Tyler, “Rare earth elements in soil and plant systems—A review,” Plant Soil 267, 191–206 (2004).

    Article  Google Scholar 

  44. H. Visscher, H. Brinkhuis, D. L. Dilcher, W. C. Elsik, C. V. Looy, M. R. Rampino, and A. Traverse, “The terminal Palaeozoic funfal event: evidence of terrestrial ecosystem destabilization and collapse,” Proc. Natl. Acad. Sci. U.S.A. 93, 2155–2158 (1996).

    Article  Google Scholar 

  45. E. Yakimenko, S. Inozemtsev, and S. Naugolnykh, “Upper Permian paleosols (Salarevskian Formation) in the central part of the Russian Platform: paleoecology and paleoenvironment,” Rev. Mex. Cien. Geol. 21 (1), 110–119 (2004).

    Google Scholar 

  46. K. Zamanian, K. Pustovoytov, and Y. Kuzyakov, “Pedogenic carbonates: forms and formation processes,” Earth-Sci. Rev. 157, 1–17 (2016).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

Studies using an automatic Qemscan® 650F system were performed on the equipment of the TechnoInfo Company (Moscow). We express our gratitude to the employee of this company O.E. Korneychik for his help.

Funding

This work was performed within the framework of the state assignment no. 0191-2019-0048 and was partially supported by the Program of the Presidium of the Russian Academy of Sciences “Evolution of the Organic World and Planetary Processes”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Alekseeva.

Additional information

Translated by D. Konyushkov

Supplementary materials are available for this article at DOI 10.1134/S106422932004002X and are accessible for authorized users.

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alekseeva, T.V. Rhizoliths in Devonian and Early Carboniferous Paleosols and Their Paleoecological Interpretation. Eurasian Soil Sc. 53, 405–419 (2020). https://doi.org/10.1134/S106422932004002X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106422932004002X

Keywords:

Navigation