Skip to main content
Log in

Application of the sequential matrix diagonalization algorithm to high-dimensional functional MRI data

  • Original paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

This paper introduces an adaptation of the sequential matrix diagonalization (SMD) method to high-dimensional functional magnetic resonance imaging (fMRI) data. SMD is currently the most efficient statistical method to perform polynomial eigenvalue decomposition. Unfortunately, with current implementations based on dense polynomial matrices, the algorithmic complexity of SMD is intractable and it cannot be applied as such to high-dimensional problems. However, for certain applications, these polynomial matrices are mostly filled with null values and we have consequently developed an efficient implementation of SMD based on a GPU-parallel representation of sparse polynomial matrices. We then apply our “sparse SMD” to fMRI data, i.e. the temporal evolution of a large grid of voxels (as many as 29,328 voxels). Because of the energy compaction property of SMD, practically all the information is concentrated by SMD on the first polynomial principal component. Brain regions that are activated over time are thus reconstructed with great fidelity through analysis-synthesis based on the first principal component only, itself in the form of a sequence of polynomial parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Alrmah MA, Weiss S, Redif S, Lambotharan S, McWhirter JG (2013) Angle of arrival estimation for broadband signals: a comparison. In: Proceedings on intelligent signal processing conference, IET, London, UK

  • Bai Z, Demmel J, Dongarra J, Ruhe A, Van der Vorst H (2000) Templates for the solution of algebraic eigenvalue problems: a practical guide. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  • Baumgartner R, Ryner L, Richter W, Summers R, Jarmasz M, Somorjai R (2000) Comparison of two exploratory data analysis methods for fMRI: fuzzy clustering vs. principal component analysis. Magn Reson Imaging 18:89–94

    Article  Google Scholar 

  • Beckmann C, Smith S (2005) Tensorial extensions of independent component analysis for multisubject fMRI analysis. NeuroImage 25(1):294–311

    Article  Google Scholar 

  • Bell AJ, Sejnowski TJ (1995) An information maximisation approach to blind separation and blind deconvolution. Neural Comput 7(6):1129–1159

    Article  Google Scholar 

  • Carcenac M, Redif S (2016) A highly scalable modular bottleneck neural network for image dimensionality reduction and image transformation. Appl Intell 44(3):557–610

    Article  Google Scholar 

  • Carcenac M, Redif S, Kasap S (2017) GPU parallelization of the sequential matrix diagonalization algorithm and its application to high-dimensional data. J Supercomput 73(8):3603–3634

    Article  Google Scholar 

  • Comon P (1994) Independent component analysis—a new concept? Signal Process 36(3):287–314

    Article  MATH  Google Scholar 

  • Corr J, Thomson K, Weiss S, McWhirter JG, Redif S, Proudler IK (2014) Multiple shift maximum element sequential matrix diagonalisation for parahermitian matrices. In: IEEE workshop on statistical signal processing, Gold Coast, Australia, pp 312–315

  • Fisher M (2014) Marching cubes. https://graphics.stanford.edu/~mdfisher/MarchingCubes.html. Accessed 20 July 2018

  • Friston K, Josephs O, Rees G, Tuner R (1998) Nonlinear event-related responses in fMRI. Magn Reson Med 39:41–52

    Article  Google Scholar 

  • Glover G (2011) Overview of functional magnetic resonance imaging. Neurosurg Clin N Am 22(2):133–139

    Article  Google Scholar 

  • Golay X, Kollias S, Stoll G, Meier D, Valavanis A, Boesiger PA (1998) New correlation-based fuzzy logic clustering algorithm for fMRI. Magn Reson Imaging 40:249–260

    Google Scholar 

  • Golub GH, Van Loan CF (2013) Matrix computations, 4th edn. The Johns Hopkins Univ. Press, Baltimore, MD

    MATH  Google Scholar 

  • Hanke M, Dinga R, Hausler C, Guntupalli JS, Casey M, Kaule FR, Stadler J (2015) High-resolution 7-Tesla fMRI data on the perception of musical genres—an extension to the studyforrest dataset. https://f1000research.com/articles/4-174/v1. Accessed 20 July 2018

  • Intel Corporation (2018) Developer reference for Intel Math Kernel Library 2018 - C. https://software.intel.com/en-us/mkl-reference-manual-for-c. Accessed 20 July 2018

  • Kailath T (1980) Linear systems. Prentice-Hall, Englewood Cliffs, NJ

    MATH  Google Scholar 

  • Kasap S, Redif S (2014) Novel field-programmable gate array architecture for computing the eigenvalue decomposition of para-Hermitian polynomial matrices. IEEE Trans VLSI Syst 22(3):522–536

    Article  Google Scholar 

  • Kim SG, Ugurbil K (1997) Functional magnetic resonance imaging of the human brain. J Neurosci Methods 74:229–243

    Article  Google Scholar 

  • Krishnan A, Williams LJ, McIntosh AR, Abdi H (2011) Partial least squares methods for neuroimaging: a tutorial and review. NeuroImage 56:455–475

    Article  Google Scholar 

  • Lazar NA, Luna B, Sweeney JA, Eddy WF (2002) Combining brains: a survey of methods for statistical pooling of information. NeuroImage 16:538–550

    Article  Google Scholar 

  • Mandelkow H, De Zwart JA, Duyn JH (2016) Linear discriminant analysis achieves high classification accuracy for the BOLD fMRI response to naturalistic movie stimuli. Front Hum Neurosci 10:128

    Article  Google Scholar 

  • McLachlan GJ (1992) Discriminant analysis and statistical pattern recognition. Wiley, Hoboken

    Book  MATH  Google Scholar 

  • McWhirter JG, Baxter PD, Cooper T, Redif S, Foster J (2007) An EVD algorithm for para-Hermitian polynomial matrices. IEEE Trans Signal Process 55(5):2158–2169

    Article  MathSciNet  MATH  Google Scholar 

  • Miller K, Luh W, Lie T, Martinez A, Obata T, Wong E, Frank L, Buxton R (2001) Nonlinear temporal dynamics the cerebral blood flow response. Hum Brain Mapp 13:1–12

    Article  Google Scholar 

  • Moret N, Tonello A, Weiss S (2011) MIMO precoding for filter bank modulation systems based on PSVD. In: Proceedings on IEEE 73rd vehicle technology conference, pp 1–95

  • Nvidia Corporation (2018) CUDA Toolkit Documentation v9.1.85. http://docs.nvidia.com/cuda. Accessed 20 July 2018

  • Poldrack Lab and Center for Reproducible Neuroscience at Stanford University (2018) OpenfMRI. https://openfmri.org. Accessed 20 July 2018 (recently superseded by https://openneuro.org)

  • Polizzi E (2009) Density-matrix-based algorithm for solving eigenvalue problems. Phys Rev B 79:115112

    Article  Google Scholar 

  • Redif S (2015) Fetal electrocardiogram estimation using polynomial eigenvalue decomposition. Turk J Electr Eng Comput Sci. https://doi.org/10.3906/elk-1401-19

    Article  Google Scholar 

  • Redif S, Kasap S (2015) Novel reconfigurable hardware architecture for polynomial matrix multiplications. IEEE Trans VLSI Syst 23(3):454–465

    Article  Google Scholar 

  • Redif S, McWhirter JG, Baxter P, Cooper T (2006) Robust broadband adaptive beamforming via polynomial eigenvalues. In: Proceeding on IEEE OCEAN conference, pp 1–6

  • Redif S, Weiss S, McWhirter JG (2011) An approximate polynomial matrix eigenvalue decomposition algorithm for para-Hermitian matrices. In: Proceedings on 11th IEEE international symposium on signal processing and information technology, Bilbao, Spain, pp 421–425

  • Redif S, Weiss S, McWhirter JG (2015) Sequential matrix diagonalisation algorithms for polynomial EVD of parahermitian matrices. IEEE Trans Signal Process 63(1):81–89

    Article  MathSciNet  MATH  Google Scholar 

  • Redif S, Weiss S, McWhirter JG (2017) Relevance of polynomial matrix decompositions to broadband blind signal separation. Signal Process 134:76–86

    Article  Google Scholar 

  • Ros BP, Bijma F, De Gunst MC, De Munck JC (2015) A three domain covariance framework for EEG/MEG data. NeuroImage 119:305–315

    Article  Google Scholar 

  • Shen H, Wang LB, Liu YD, Hu DW (2014) Discriminative analysis of resting-state functional connectivity patterns of schizophrenia using low dimensional embedding of fMRI. NeuroImage 49:3110–3121

    Article  Google Scholar 

  • Tkacenko A (2010) Approximate eigenvalue decomposition of para-Hermitian systems through successive FIR paraunitary transformations. In: Proceedings on IEEE international conference on acoustics, speech and signal processing, Dallas, TX, USA, pp 4074–4077

  • Tohidian M, Amindavar H, Reza AM (2013) A DFT-based approximate eigenvalue and singular value decomposition of polynomial matrices. EURASIP J Adv Signal Process 1:1–16

    Google Scholar 

  • Turner B, Paul E, Miller M, Barbey A (2018) Small sample sizes reduce the replicability of task-based fMRI studies. Commun Biol. https://doi.org/10.1038/s42003-018-0073-z

    Article  Google Scholar 

  • Vaidyanathan PP (1993) Multirate systems and filter banks. Prentice-Hall, Englewood Cliffs, NJ

    MATH  Google Scholar 

  • Virta J, Li B, Nordhausen K, Oja H (2016) Independent component analysis for tensor-valued data. Preprint available as arXiv:1602.00879

  • Weiss S, Pestana J, Proudler IK (2018) On the existence and uniqueness of the eigenvalue decomposition of a parahermitian matrix. Trans Signal Process 66(10):2659–2672

    Article  MathSciNet  MATH  Google Scholar 

  • Wellcome Trust Centre for Neuroimaging (2018) Statistical parametric mapping (SPM). http://www.fil.ion.ucl.ac.uk/spm. Accessed 20 July 2018

  • Zarahn E, Aquirre GK, D’Esposito M (1997) Empirical analysis of BOLD fMRI statistics. NeuroImage 5:179–197

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Carcenac.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carcenac, M., Redif, S. Application of the sequential matrix diagonalization algorithm to high-dimensional functional MRI data. Comput Stat 35, 579–605 (2020). https://doi.org/10.1007/s00180-019-00925-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-019-00925-8

Keywords

Navigation