Skip to main content
Log in

Further Study on Z-Eigenvalue Localization Set and Positive Definiteness of Fourth-Order Tensors

  • Published:
Bulletin of the Malaysian Mathematical Sciences Society Aims and scope Submit manuscript

Abstract

Fourth-order tensors play a fundamental role in signal processing, wireless communication systems, image processing, data analysis and higher-order statistics. In this paper, we introduce a Z-identity tensor and establish two Z-eigenvalue inclusion sets for fourth-order tensors, which are sharper than some existing results. Numerical examples are proposed to verify the efficiency of the obtained results. As applications, we provide some checkable sufficient conditions for the positive definiteness of fourth-order symmetric tensors. Further, we propose upper bounds on the Z-spectral radius of fourth-order nonnegative tensors and estimate the convergence rate of the greedy rank-one algorithms under suitable conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barmpoutis, A., Vemuri, B.C., Howland, D., Forder, J.R.: Regularized positive-definite fourth order tensor field estimation from DW-MRI. Neuroimage 45, 153–162 (2009)

    Article  Google Scholar 

  2. Bloy, L., Verma, R.: On Computing the Underlying Fiber Directions from the Diffusion Orientation Distribution Function in Medical Image Computing and Computer-Assisted Intervention, pp. 1–8. Springer, Berlin (2008)

    Google Scholar 

  3. Chang, K., Pearson, K., Zhang, T.: Some variational principles for \(Z\)-eigenvalues of nonnegative tensors. Linear Algebra Appl. 438, 4166–4182 (2013)

    Article  MathSciNet  Google Scholar 

  4. Devore, R., Telmyakov, V.: Some remarks on greedy algorithm. Adv. Comput. Math. 5, 173–187 (1996)

    Article  MathSciNet  Google Scholar 

  5. Gao, L., Luo, F., Yan, Z.: Finite-time annular domain stability of impulsive switched systems: mode-dependent parameter approach. Int. J. Control 92, 1381–1392 (2019)

    Article  MathSciNet  Google Scholar 

  6. Gao, L., Cao, Z., Wang, G.: Almost sure stability of discrete-time nonlinear Markovian jump delayed systems with impulsive signals. Nonlinear Anal-Hybri. 34, 248–263 (2019)

    Article  MathSciNet  Google Scholar 

  7. He, J., Huang, T.: Upper bound for the largest \(Z\)-eigenvalue of positive tensors. Appl. Math. Lett. 38, 110–114 (2014)

    Article  MathSciNet  Google Scholar 

  8. He, J., Liu, Y., Xu, G.: \(Z\)-eigenvalues-based sufficient conditions for the positive definiteness of fourth-order tensors. Bull. Malays. Math. Sci. Soc. 43(2), 1069–1093 (2020)

    Article  MathSciNet  Google Scholar 

  9. Kofidis, E., Regalia, P.: On the best rank-1 approximation of higher-order supersymmetric tensors. SIAM J. Matrix Anal. Appl. 23, 863–884 (2002)

    Article  MathSciNet  Google Scholar 

  10. Kolda, T., Mayo, J.: Shifted power method for computing tensor eigenpairs. SIAM J. Matrix Anal. Appl. 34, 1095–1124 (2011)

    Article  MathSciNet  Google Scholar 

  11. Li, C., Li, Y., Kong, X.: New eigenvalue inclusion sets for tensors. Numer. Linear Algebra Appl. 21, 39–50 (2014)

    Article  MathSciNet  Google Scholar 

  12. Li, G., Qi, L., Yu, G.: The \(Z\)-eigenvalues of a symmetric tensor and its application to spectral hypergraph theory. Numer. Linear Algebra Appl. 20, 1001–1029 (2013)

    Article  MathSciNet  Google Scholar 

  13. Lim, L.H.: Singular values and eigenvalues of tensors: a variational approach. In: Proceedings of the IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing Puerto Vallarta, pp. 129–132 (2005)

  14. Ni, Q., Qi, L., Wang, F.: An eigenvalue method for testing the positive definiteness of a multivariate form. IEEE. Trans. Autom. Control 53, 1096–1107 (2008)

    Article  MathSciNet  Google Scholar 

  15. Qi, L.: Eigenvalues of a real supersymmetric tensor. J. Symb. Comput. 53, 1302–1324 (2005)

    Article  MathSciNet  Google Scholar 

  16. Qi, L., Yu, G., Wu, E.: Higher order positive semi-definite diffusion tensor imaging. SIAM J. Imaging Sci. 3, 416–433 (2010)

    Article  MathSciNet  Google Scholar 

  17. Qi, L., Wang, F., Wang, Y.: \(Z\)-eigenvalue methods for a global polynomial optimization problem. Math. Program. 118, 301–316 (2009)

    Article  MathSciNet  Google Scholar 

  18. Qi, L.: The best rank-one approximation ratio of a tensor space. SIAM J. Matrix Anal. Appl. 32, 430–442 (2011)

    Article  MathSciNet  Google Scholar 

  19. Sang, C.: A new Brauer-type \(Z\)-eigenvalue inclusion set for tensors. Numer. Algorithms 32, 781–794 (2019)

    Article  MathSciNet  Google Scholar 

  20. Song, Y., Qi, L.: Spectral properties of positively homogeneous operators induced by higher order tensors. SIAM J. Matrix Anal. Appl. 34, 1581–1595 (2013)

    Article  MathSciNet  Google Scholar 

  21. Wang, G., Zhou, G., Caccetta, L.: Sharp Brauer-type eigenvalue inclusion theorems for tensors. Pac. J. Optim. 14(2), 227–244 (2018)

    MathSciNet  Google Scholar 

  22. Wang, G., Zhou, G., Caccetta, L.: \(Z\)-eigenvalue inclusion theorems for tensors. Discrete Contin. Dyn. Syst. Ser. B. 22, 187–198 (2017)

    MathSciNet  MATH  Google Scholar 

  23. Wang, G., Wang, Y., Wang, Y.: Some Ostrowski-type bound estimations of spectral radius for weakly irreducible nonnegative tensors. Linear Multlinear Algebra (2019). https://doi.org/10.1080/03081087.2018.1561823

    Article  MATH  Google Scholar 

  24. Wang, G., Wang, Y., Liu, L.: Bound estimations on the eigenvalues for Fan Product of \(M\)-tensors. Taiwan. J. Math. 23, 751–766 (2019)

    Article  MathSciNet  Google Scholar 

  25. Wang, Y., Zhou, G., Caccetta, L.: Convergence analysis of a block improvement method for polynomial optimization over unit spheres. Numer. Linear Algebra Appl. 22, 1059–1076 (2015)

    Article  MathSciNet  Google Scholar 

  26. Wang, Y., Qi, L.: On the successive supersymmetric rank-1 decomposition of higher-order supersymmetric tensors. Numer. Linear Algebra Appl. 14, 503–519 (2007)

    Article  MathSciNet  Google Scholar 

  27. Zhang, T., Golub, G.: Rank-1 approximation of higher-order tensors. SIAM J. Matrix Anal. Appl. 23, 534–550 (2001)

    Article  MathSciNet  Google Scholar 

  28. Zhou, G., Wang, G., Qi, L., Alqahtani, A.: A fast algorithm for the spectral radii of weakly reducible nonnegative tensors. Numer. Linear Algebra Appl. 25(2), e2134 (2018)

    Article  MathSciNet  Google Scholar 

  29. Zhao, J.: A new \(E\)-eigenvalue localization set for fourth-order tensors. Bull. Malays. Math. Sci. Soc. 43(2), 1685–1707 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (11671228, 11801430).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Wang.

Additional information

Communicated by Fuad Kittaneh.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, L., Wang, G. & Liu, L. Further Study on Z-Eigenvalue Localization Set and Positive Definiteness of Fourth-Order Tensors. Bull. Malays. Math. Sci. Soc. 44, 105–129 (2021). https://doi.org/10.1007/s40840-020-00939-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40840-020-00939-2

Keywords

Mathematics Subject Classification

Navigation