Skip to main content
Log in

Computational Aspects of Ordered Integer Partitions with Bounds

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

This paper is dedicated to the counting problem of writing an integer number z as a sum of an ordered sequence of n integers from n given intervals, i.e., counting the number of configurations \((z_1,\ldots ,z_n)\) with \(z = z_1 + \cdots + z_n\) for \(z_i \in [x_i, y_i]\) with integers \(x_i\) and \(y_i\) and \(1 \le i \le n\). We show an algorithm computing this number in \( \mathop {}\mathopen {}{\mathcal {O}}\mathopen {}\left( n z^{\lg n}\right) \) average time, and a data structure computing this number in \(\mathop {}\mathopen {}{\mathcal {O}}\mathopen {}\left( n\right) \) time, independently of z. The data structure is constructed in \( \mathop {}\mathopen {}{\mathcal {O}}\mathopen {}\left( 2^n n^3\right) \) time. Its construction algorithm only depends on the intervals \([x_i,y_i]\) (\(1 \le i \le n\)). This construction algorithm can be parallelized with \(\pi = \mathop {}\mathopen {}{\mathcal {O}}\mathopen {}\left( n^3\right) \) processors, yielding \(\mathop {}\mathopen {}{\mathcal {O}}\mathopen {}\left( 2^n \frac{n^3}{\pi }\right) \) construction time with high probability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. In particular, we allow negative integer values.

References

  1. Andrews, G.E.: The Theory of Partitions, 1st edn. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  2. Baker Jr., H.C., Hewitt, C.: The incremental garbage collection of processes. SIGPLAN 12(8), 55–59 (1977)

    Article  Google Scholar 

  3. Beihoffer, D., Hendry, J., Nijenhuis, A., Wagon, S.: Faster algorithms for Frobenius numbers. Electron. J. Combin. 12(27), 1–38 (2005)

    MathSciNet  MATH  Google Scholar 

  4. Carter, M.: Foundations of Mathematical Economics, 1st edn. MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  5. Coello, C.A.C., Dhaenens, C., Jourdan, L.: Multi-objective combinatorial optimization: Problematic and context. In: Advances in Multi-Objective Nature Inspired Computing, Studies in Computational Intelligence, vol. 272, pp. 1–21. Springer (2010)

  6. Conway, H., Guy, R.: The Book of Numbers, 1st edn. Copernicus, Torun (1995)

    MATH  Google Scholar 

  7. Endres, M.: Semi-Skylines and Skyline Snippets—Theory and Applications, 1st edn. Books on Demand, Norderstedt (2011)

    Google Scholar 

  8. Feller, W.: An Introduction to Probability Theory and Its Applications. Wiley publications in statistics, 2nd edn. Chapman & Hall, London (2008)

    Google Scholar 

  9. von zur Gathen, J., Gerhard, J.: Modern Computer Algebra, 1st edn. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  10. Glück, R., Köppl, D., Wirsching, G.: Computational aspects of ordered integer partition with upper bounds. In: Proc. SEA. LNCS, vol. 7933, pp. 79–90. Springer (2013)

  11. Hardy, G., Wright, E.: An Introduction to the Theory of Numbers, 3rd edn. Oxford University Press, Oxford (1954)

    MATH  Google Scholar 

  12. Klamroth, K.: Discrete multiobjective optimization. In: Proc. EMO. LNCS, vol. 5467, p. 4. Springer (2009)

  13. Knuth, D.E.: Johann Faulhaber and Sums of Powers. Math. Comput. 61(203), 277–294 (1993)

    Article  MathSciNet  Google Scholar 

  14. Knuth, D.E.: Seminumerical Algorithms, 3rd edn. Addison-Wesley, Boston (1997)

    Google Scholar 

  15. Landau, L.D., Lifshitz, E.M.: Quantum Mechanics-Non-relativistic Theory, 2nd edn. Pergamon Press, Oxford (1965)

    MATH  Google Scholar 

  16. Matoušek, J., Nešetřil, J.: Invitation to Discrete Mathematics, 2nd edn. Oxford University Press, Oxford (2009)

    MATH  Google Scholar 

  17. Park, G.: A generalization of multiple choice balls-into-bins: tight bounds. Algorithmica 77(4), 1159–1193 (2017)

    Article  MathSciNet  Google Scholar 

  18. Preisinger, T.: Graph-based algorithms for Pareto preference query evaluation. Ph.D. thesis, University of Augsburg, Germany (2009)

  19. Raab, M., Steger, A.: “Balls into bins”—A simple and tight analysis. In: Proc. RANDOM. LNCS, vol. 1518, pp. 159–170. Springer (1998)

  20. Wenzel, F., Köppl, D., Kießling, W.: Interactive toolbox for spatial-textual preference queries. In: Proc. SSTD. LNCS, vol. 8098, pp. 462–466. Springer (2013)

  21. Wirsching, G.: Balls in constrained urns and Cantor-like sets. Zeitschrift für Analysis und ihre Anwendungen 17, 979–996 (1998)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is partly funded by the JSPS KAKENHI Grant Number JP18F18120.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominik Köppl.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Parts of this work have already been presented at the 12th International Symposium on Experimental Algorithms [10].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glück, R., Köppl, D. Computational Aspects of Ordered Integer Partitions with Bounds. Algorithmica 82, 2955–2984 (2020). https://doi.org/10.1007/s00453-020-00713-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-020-00713-7

Navigation