Skip to main content
Log in

Phase-isometries between two \(\ell ^p(\Gamma , H)\)-type spaces

  • Published:
Aequationes mathematicae Aims and scope Submit manuscript

Abstract

Let \(\Gamma ,\Delta \) be nonempty index sets, and let HK be inner product spaces. We prove that for \(p\ge 1\) any surjective phase-isometry between \(\ell ^p(\Gamma ,H)\) and \(\ell ^p(\Delta , K)\) is a plus–minus linear isometry. This can be considered as an extension of Wigner’s theorem for real \(\ell ^p(\Gamma , H)\)-type spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chevalier, G.: Wigner’s theorem and its generalizations. In: Engesser, K., Gabbay, D.M., Lehmann, D. (eds.) Handbook of Quantum Logic and Quantum Structures, pp. 429–475. Elsevier, Amsterdam (2007)

    Chapter  Google Scholar 

  2. Gehér, Gy.P.: An elementary proof for the non-bijective version of Wigner’s theorem. Phys. Lett. A 378, 2054–2057 (2014)

  3. Györy, M.: A new proof of Wigner’s theorem. Rep. Math. Phys. 54, 159–167 (2004)

    Article  MathSciNet  Google Scholar 

  4. Huang, X., Tan, D.: Wigner’s theorem in atomic \(L_p\)-spaces \((p>0)\). Publ. Math. Debr. 92(3–4), 411–418 (2018)

    Article  Google Scholar 

  5. Jia, W., Tan, D.: Wigner’s theorem in \({\cal{L}}^\infty (\Gamma )\)-type spaces. Bull. Aust. Math. Soc. 97(2), 279–284 (2018)

    Article  MathSciNet  Google Scholar 

  6. Karn, A.K.: Orthogonality in \(\ell _p\)-spaces and its bearing on ordered Banach spaces. Positivity 18(2), 223–234 (2014)

    Article  MathSciNet  Google Scholar 

  7. Megginson, R.E.: An Introduction to Banach Space Theory, vol. 183. Springer, New York (2012)

    MATH  Google Scholar 

  8. Molnár, L.: Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorns version of Wigner’s theorem. J. Funct. Anal. 194(2), 248–262 (2002)

    Article  MathSciNet  Google Scholar 

  9. Maksa, G., Páles, Z.: Wigner’s theorem revisited. Publ. Math. Debr. 81(1–2), 243–249 (2012)

    Article  MathSciNet  Google Scholar 

  10. Mazur, S., Ulam, S.: Surles transformationes isométriques despaces vectoriels normés. Comptes Rendus Math. Acad. Sci. Paris 194, 946–948 (1932)

    MATH  Google Scholar 

  11. Rätz, J.: On Wigner’s theorem: remarks, complements, comments, and corollaries. Aequ. Math. 52(1–2), 1–9 (1996)

    Article  MathSciNet  Google Scholar 

  12. Turnšek, A.: A variant of Wigner’s functional equation. Aequ. Math. 89(4), 1–8 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank the referee whose careful reading and suggestions led to a much improved version of this paper. The authors wish to express their appreciation to Professor Guanggui Ding for several valuable comments. This work was supported by the Natural Science Foundation of China, Grant Nos. 11371201, 11201337, 11201338.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xujian Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, X., Huang, X. Phase-isometries between two \(\ell ^p(\Gamma , H)\)-type spaces. Aequat. Math. 94, 793–802 (2020). https://doi.org/10.1007/s00010-020-00723-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00010-020-00723-4

Keywords

Mathematics Subject Classification

Navigation