Skip to main content
Log in

Fluorinated MWCNTs for Preparation of High-Stability Li–SnO2 Batteries

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The electrochemical performance of fluorinated multiwalled carbon nanotubes (F-MWCNTs) as a new type of conductive agent for Li–SnO2 batteries has been studied. Multiwalled carbon nanotubes (MWCNTs) were fluorinated to obtain F-MWCNTs with core–shell structure (fluorocarbon atomic ratio C/F = 1:1). The unique tubular structure of the F-MWCNTs allows more Li+ ions and electrons to enter the channel around the active material CF1, which increases the electrochemical reaction effect and reduces the polarization effect of the batteries, thereby improving the utilization of the active material, and the capacity as well as the stability of the discharge plateau of the resulting batteries. The F-MWCNTs are an excellent alternative to the traditional conductive graphite. The SnO2@F-MWCNTs battery showed high specific capacity (1588.71 mAh g−1 at 100 mA g−1), excellent cycle performance (962.92 mAh g−1 after 100 cycles), excellent coulombic efficiency (99.89%), and low internal resistance in repeated electrochemical tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. X. Zhou, L.-J. Wan, and Y.-G. Guo, Adv. Mater. 25, 2152 (2013).

    Article  Google Scholar 

  2. A. Jahel, C.M. Ghimbeu, L. Monconduit, and C. Vix-Guterl, Adv. Energy Mater. 4, 1400025 (2014).

    Article  Google Scholar 

  3. Y. Wang, H.C. Zeng, and J.Y. Lee, Adv. Mater. 18, 645 (2006).

    Article  Google Scholar 

  4. L. Li, X. Yin, S. Liu, Y. Wang, L. Chen, and T. Wang, Electrochem. Commun. 12, 1383 (2010).

    Article  Google Scholar 

  5. J.S. Chen, Y.L. Cheah, Y.T. Chen, N. Jayaprakash, S. Madhavi, Y.H. Yang, and X.W. Lou, J. Phys. Chem. C 113, 20504 (2009).

    Article  Google Scholar 

  6. H.X. Zhang, C. Feng, Y.C. Zhai, and K.L. Jiang, Adv. Mater. 21, 2299 (2009).

    Article  Google Scholar 

  7. Z. Chen, M. Zhou, Y. Cao, X. Ai, H. Yang, and J. Liu, Adv. Energy Mater. 2, 95 (2012).

    Article  Google Scholar 

  8. J.S. Chen, L.A. Archer, and X.W.D. Lou, J. Mater. Chem. 21, 9912 (2011).

    Article  Google Scholar 

  9. H.B. Wu, J.S. Chen, H.H. Hng, and X.W.D. Lou, Nanoscale 4, 2526 (2012).

    Article  Google Scholar 

  10. D. Larcher, S. Beattie, M. Morcrette, and K. Edstr, J. Mater. Chem. 17, 3759 (2007).

    Article  Google Scholar 

  11. J.Y. Huang, L. Zhong, C.M. Wang, J.P. Sullivan, W. Xu, and L.Q. Zhang, et al., Science 330, 1515 (2010).

    Article  Google Scholar 

  12. D.W. Xu, S. Xin, Y. You, Y. Li, H.P. Cong, and S.H. Yu, ChemNanoMat 2, 712 (2016).

    Article  Google Scholar 

  13. C. Luo, S. Niu, G. Zhou, W. Lv, B. Li, F. Kang, and Q.H. Yang, Chem. Commun. 52, 12143 (2016).

    Article  Google Scholar 

  14. Y. Lei, J. Li, Y. Wang, L. Gu, Y. Chang, H. Yuan, and D. Xiao, ACS Appl. Mater. Interfaces 6, 1773 (2014).

    Article  Google Scholar 

  15. B. Zhao, G. Zhang, J. Song, Y. Jiang, H. Zhuang, and P. Liu, Electrochim. Acta 56, 7340 (2011).

    Article  Google Scholar 

  16. B. Zhao, Z. Wang, S. Wang, J. Jiang, J. Si, and S. Huang, et al., Nanoscale 10, 16116 (2018).

    Article  Google Scholar 

  17. Z. Wang, D. Song, J. Si, Y. Jiang, Y. Yang, and Y. Jiang, et al., Electrochim. Acta 292, 72 (2018).

    Article  Google Scholar 

  18. Y. Liang, W. Zhang, D. Wu, Q.-Q. Ni, and M.Q. Zhang, Adv. Mater. Interfaces 5, 1800430 (2018).

    Article  Google Scholar 

  19. C. He, Y. Xiao, H. Dong, Y. Liu, M. Zheng, and K. Xiao, et al., Electrochim. Acta 142, 157 (2014).

    Article  Google Scholar 

  20. Z. Wen, Q. Wang, Q. Zhang, and J. Li, Adv. Funct. Mater. 17, 2772 (2007).

    Article  Google Scholar 

  21. H. Xu, L. Shi, Z. Wang, J. Liu, J. Zhu, and Y. Zhao, et al., ACS Appl. Mater. Interfaces 7, 27486 (2015).

    Article  Google Scholar 

  22. L.L.G. Tovar, P.A. Connor, F. Belliard, L.M. Torres-Martínez, and J.T. Irvine, J. Power Sources 97, 258 (2001).

    Article  Google Scholar 

  23. J. Sun, L. Xiao, S. Jiang, G. Li, Y. Huang, and J. Geng, Chem. Mater. 27, 4594 (2015).

    Article  Google Scholar 

  24. W.H. Baek, M. Choi, T.S. Yoon, H.H. Lee, and Y.S. Kim, Appl. Phys. Lett. 96, 133506 (2010).

    Article  Google Scholar 

  25. H.G. Jung, C.S. Yoon, J. Prakash, and Y.K. Sun, J. Phys. Chem. C 113, 21258 (2009).

    Article  Google Scholar 

  26. Y. Ma, B. Ding, G. Ji, and J.Y. Lee, ACS Nano 7, 10870 (2013).

    Article  Google Scholar 

  27. Y. Sun, G. Ning, C. Qi, J. Li, X. Ma, C. Xu, and J. Gao, Electrochim. Acta 190, 141 (2016).

    Article  Google Scholar 

  28. R. Jayasinghe, A.K. Thapa, R.R. Dharmasena, T.Q. Nguyen, B.K. Pradhan, and H.S. Paudel, et al., J. Power Sources 253, 404 (2014).

    Article  Google Scholar 

  29. N. von Aspern, G.V. Röschenthaler, M. Winter, and I. Cekic-Laskovic, Angew. Chem. Int. Ed. 58, 15978 (2019).

    Article  Google Scholar 

  30. Y. Jiang, Y. Wan, W. Jiang, H. Tao, W. Li, and S. Huang, et al., Chem. Eng. J. 367, 45 (2019).

    Article  Google Scholar 

  31. B. Zhao, H. Zhuang, Y. Yang, Y. Wang, H. Tao, and Z. Wang, et al., Electrochim. Acta 300, 253 (2019).

    Article  Google Scholar 

  32. D. Song, S. Wang, R. Liu, J. Jiang, Y. Jiang, and S. Huang, et al., Appl. Surf. Sci. 478, 290 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by Jiangxi Scientific Fund (20142BBE50071) and Jiangxi Education Fund (KJLD13006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaogang Sun.

Ethics declarations

Conflict of interest

The authors declare that they do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, J., Sun, X., Li, R. et al. Fluorinated MWCNTs for Preparation of High-Stability Li–SnO2 Batteries. JOM 72, 3003–3010 (2020). https://doi.org/10.1007/s11837-020-04178-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04178-5

Navigation