Skip to main content

Advertisement

Log in

Simulation-Based Exergetic Analysis of NdFeB Permanent Magnet Production to Understand Large Systems

  • Thermodynamic Modeling of Sustainable Non-Ferrous Metals Production
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Metallurgical simulation and evaluation of the resource efficiency of whole production processes are of key importance for sound environmental impact assessments. Exergy dissipation analysis is suitable to quantify the theoretical limits of a process and pinpoint hotspots for improvements along the value chain. Production of NdFeB permanent magnets is evaluated herein using a simulation-based life cycle assessment and exergetic analysis, including 107 unit operations, 361 flows, and 209 compounds. This methodology highlights areas with the greatest potential for improvements in terms of technology and environmental impact, shedding light on the true resource efficiency and minimum exergy dissipation for the production of permanent magnets, which are applied in several low-carbon technologies. The maximum exergy efficiency of 60.7% shows that there is a limit on sustainability, which could however be improved via technological improvements and recovery of waste streams, revealing the inconvenient truth that the resource efficiency will never reach 100%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J.L. Palacios, I. Fernandes, A.A. Llamas, A. Valero, A. Valero, and M.A. Reuter, Energy Rep. 5, 364 (2019). https://doi.org/10.1016/j.egyr.2019.03.004.

    Article  Google Scholar 

  2. C. Lund, P. Lamberg, and T. Lindberg, Miner. Eng. 49, 7 (2013). https://doi.org/10.1016/j.mineng.2013.04.005.

    Article  Google Scholar 

  3. C. Philander and A. Rozendaal, Miner. Eng. 52, 82 (2013). https://doi.org/10.1016/j.mineng.2013.04.011.

    Article  Google Scholar 

  4. K. Tungpalan, E. Manlapig, M. Andrusiewicz, L. Keeney, E. Wightman, and M. Edraki, Miner. Eng. 71, 49 (2015). https://doi.org/10.1016/j.mineng.2014.10.004.

    Article  Google Scholar 

  5. M.A. Reuter, A. van Schaik, and J. Gediga, Int. J. Life Cycle Assess. 20, 671 (2015). https://doi.org/10.1007/s11367-015-0860-4.

    Article  Google Scholar 

  6. M. A. Reuter, I. Kojo, A. Roine, M. Jåfs, J. Gediga, and H. Florin, [Online]. https://www.researchgate.net/publication/270279035. Accessed 16 Dec 2019.

  7. A. van Schaik and M. A. Reuter, in Handbook Recycling State-of-the-Art Practice of Analytical Sciences (Elsevier Inc., 2014), pp. 307–378. https://doi.org/10.1016/B978-0-12-396459-5.00022-2.

  8. I. Rönnlund, M. Reuter, S. Horn, J. Aho, M. Aho, M. Päällysaho, L. Ylimäki, and T. Pursula, Int. J. Life Cycle Assess. 21. 1473. (2016). https://doi.org/10.1007/s11367-016-1122-9.

    Article  Google Scholar 

  9. I. Rönnlund, M. Reuter, S. Horn, J. Aho, M. Aho, M. Päällysaho, L. Ylimäki, and T. Pursula, Int. J. Life Cycle Assess. 21, 1719 (2016). https://doi.org/10.1007/s11367-016-1123-8.

    Article  Google Scholar 

  10. P.S. Arshi, E. Vahidi, and F. Zhao, ACS Sustain. Chem. Eng. 6, 3311 (2018). https://doi.org/10.1021/acssuschemeng.7b03484.

    Article  Google Scholar 

  11. G. Bailey, N. Mancheri, and K. Van Acker, J. Sustain. Metall. 3, 611 (2017). https://doi.org/10.1007/s40831-017-0118-4.

    Article  Google Scholar 

  12. B. Sprecher, Y. Xiao, A. Walton, J. Speight, R. Harris, R. Kleijn, G. Visser, and G.J. Kramer, Environ. Sci. Technol. 48, 3951 (2014). https://doi.org/10.1021/es404596q.

    Article  Google Scholar 

  13. C. Wulf, P. Zapp, A. Schreiber, J. Marx, and H. Schlör, J. Ind. Ecol. (2017). https://doi.org/10.1111/jiec.12575.

    Article  Google Scholar 

  14. E. Sciubba, Energy 168, 462 (2019). https://doi.org/10.1016/j.energy.2018.11.101.

    Article  Google Scholar 

  15. M.A. Reuter, A. van Schaik, J. Gutzmer, N. Bartie, and A. Abadías-Llamas, Annu. Rev. Mater. Res. 49, 253 (2019). https://doi.org/10.1146/annurev-matsci-070218-010057.

    Article  Google Scholar 

  16. N.J. Bartie, A. Abadías Llamas, M. Heibeck, M. Fröhling, and O. Volkova, Miner. Process. Extr. Metall. (2019). https://doi.org/10.1080/25726641.2019.1685243.

    Article  Google Scholar 

  17. A. Abadías Llamas, N.J. Bartie, M. Heibeck, M. Stelter, and M.A. Reuter, J. Sustain. Metall. 6, 34 (2020). https://doi.org/10.1007/s40831-019-00255-5.

    Article  Google Scholar 

  18. C. Tunsu, in Waste Electronic and Electrical Equipment Recycling (Elsevier, 2018), pp. 175–211. https://doi.org/10.1016/B978-0-08-102057-9.00008-1.

  19. J. Kooroshy, G. Tiess, A. Tukker, and A. Walton, Strenghtening the European Rare Earths Supply Chain: Challenges and Policy Options (2015).

  20. S. Peelman, Z. H. I. Sun, J. Sietsma, and Y. Yang, in The Rare Earth Industrial Technologies Elements Economic, and Environmental Implications (Elsevier Inc., 2015), pp. 319–334. https://doi.org/10.1016/B978-0-12-802328-0.00021-8.

  21. United Nations, Transforming Our World: The 2030 Agenda for Sustainable Development (2015).

  22. J. Marx, A. Schreiber, P. Zapp, and F. Walachowicz, (2018). https://doi.org/10.1021/acssuschemeng.7b04165.

  23. Outotec, [Online]. https://www.outotec.com/products/digital-solutions/hsc-chemistry/. Accessed 20 Oct 2019.

  24. Thinkstep, [Online]. http://www.gabi-software.com/international/software/gabi-software/. Accessed 20 Oct 2019.

  25. J. Gediga, Handb. Recycl. (2014). https://doi.org/10.1016/B978-0-12-396459-5.15003-2.

    Article  Google Scholar 

  26. A. I. Filho, B. F. Riffel, and C. A. de F. Sousa, in Niobium Science Technology Proceedings of the International Symposium Niobium 2001 (Orlando, FL, 2001). pp. 53–66.

  27. J.L. Antoniassi, Caracterização Tecnológica de Recursos Minerais de Terras Raras Em Complexos Alcalinos e Alcalino-Carbonatíticos Do Brasil (São Paulo: Universidade de Sao Paulo, 2017).

    Book  Google Scholar 

  28. C.K. Gupta and A.K. Suri, Extractive Metallurgy of Niobium (Boca Raton: CRC Press, 1993).

    Google Scholar 

  29. J.F. Oliveira, S.M. Saraiva, J.S. Pimenta, and A.P.A. Oliveira, Miner. Eng. 14, 99 (2001). https://doi.org/10.1016/S0892-6875(00)00163-1.

    Article  Google Scholar 

  30. N. Krishnamurthy and C.K. Gupta, Extractive Metallurgy of Rare Earths (Boca Raton: CRC Press, 2015)https://doi.org/10.1201/b19055.

    Book  Google Scholar 

  31. D. Jiles, Introduction to Magnetism and Magnetic Materials (Boca Raton: CRC Press, 2015).

    Book  Google Scholar 

  32. V. A. Glebov, Y. M. Rabinovich, and E. N. Shyngaryev, J. Iron Steel Res. Int. 13. 172. (n.d.). https://doi.org/10.1016/S1006-706X(08)60177-6.

  33. Z. Chen, D. Miller, and J. Herchenroeder, J. Appl. Phys. 107, 9 (2010). https://doi.org/10.1063/1.3348544.

    Article  Google Scholar 

  34. Y. Yang, A. Walton, R. Sheridan, K. Güth, R. Gauß, O. Gutfleisch, M. Buchert, B.M. Steenari, T. Van Gerven, P.T. Jones, and K. Binnemans, J. Sustain. Metall. 3, 122 (2017). https://doi.org/10.1007/s40831-016-0090-4.

    Article  Google Scholar 

  35. M.F.deO.S. Filho, Tecnologia de Fabricação e Caracterização de Ímãs Nd-Fe-B (Florianópolis: Universidade Federal de Santa Catarina, 1993).

    Google Scholar 

  36. F. Grandjean, G. Long, and K. Buschow, Interstitial Intermetallic Alloys (Berlin: Springer, 2012).

    Google Scholar 

  37. H. Jin, P. Afiuny, T. McIntyre, Y. Yih, and J.W. Sutherland, Procedia CIRP 48, 45 (2016). https://doi.org/10.1016/j.procir.2016.03.013.

    Article  Google Scholar 

  38. International Organization for Standardization, Environmental Management - Life Cycle Assessment - Principles and Framework (ISO Standard No. 14040). (2006).

  39. International Organization for Standardization, Environmental Management - Life Cycle Assessment - Requirements and Guilelines (ISO Standard No. 14044) (2006).

  40. G. Wernet, C. Bauer, B. Steubing, J. Reinhard, E. Moreno-Ruiz, and B. Weidema, Int. J. Life Cycle Assess. 21, 1218 (2016). https://doi.org/10.1007/s11367-016-1087-8.

    Article  Google Scholar 

  41. Ecoinvent, [Online]. https://www.ecoinvent.org/support/documents-and-files/information-on-ecoinvent-3/information-on-ecoinvent-3.html#3341. Accessed 18 Dec 2019.

  42. B. Steubing, G. Wernet, J. Reinhard, C. Bauer, and E. Moreno-Ruiz, Int. J. Life Cycle Assess. 21, 1269 (2016). https://doi.org/10.1007/s11367-016-1109-6.

    Article  Google Scholar 

  43. Ecoinvent, [Online]. https://v30.ecoquery.ecoinvent.org/Details/UPR/01506096-5f95-46a0-91ad-9b50e1f66bc4/8b738ea0-f89e-4627-8679-433616064e82. Accessed 20 Oct 2019.

  44. J. Szargut, Exergy Method: Technical and Ecological Applications (Southampton: WIT Press, 2005).

    Google Scholar 

  45. R. Petela, Fuel 63, 414 (1984). https://doi.org/10.1016/0016-2361(84)90021-8.

    Article  Google Scholar 

  46. A. Abadias Llamas, A. Valero Delgado, A. Valero Capilla, C. Torres Cuadra, M. Hultgren, M. Peltomäki, A. Roine, M. Stelter, and M.A. Reuter, Miner. Eng. 131, 51 (2019). https://doi.org/10.1016/j.mineng.2018.11.007.

    Article  Google Scholar 

  47. M. Hernandez, M. Messagie, O. Hegazy, L. Marengo, O. Winter, and J. Van Mierlo, Int. J. Life Cycle Assess. 22, 54 (2017). https://doi.org/10.1007/s11367-015-0973-9.

    Article  Google Scholar 

  48. B. Sprecher, R. Kleijn, and G.J. Kramer, Environ. Sci. Technol. 48, 9506 (2014). https://doi.org/10.1021/es501572z.

    Article  Google Scholar 

  49. R.D. Abreu and C.A. Morais, Miner. Eng. 23, 536 (2010). https://doi.org/10.1016/j.mineng.2010.03.010.

    Article  Google Scholar 

  50. A. Nordelöf and A.M. Tillman, Int. J. Life Cycle Assess. 23, 295 (2018). https://doi.org/10.1007/s11367-017-1309-8.

    Article  Google Scholar 

  51. A. Nordelöf, E. Grunditz, S. Lundmark, A.M. Tillman, M. Alatalo, and T. Thiringer, Transp. Res. Part D Transp. Environ. 67, 263 (2019). https://doi.org/10.1016/j.trd.2018.11.004.

    Article  Google Scholar 

  52. A. Fysikopoulos, D. Anagnostakis, K. Salonitis, and G. Chryssolouris, Procedia CIRP 3, 477 (2012). https://doi.org/10.1016/j.procir.2012.07.082.

    Article  Google Scholar 

  53. M. Zakotnik, C.O. Tudor, L.T. Peiró, P. Afiuny, R. Skomski, and G.P. Hatch, Environ. Technol. Innov. 5, 117 (2016). https://doi.org/10.1016/j.eti.2016.01.002.

    Article  Google Scholar 

  54. A. Walton, H. Yi, N.A. Rowson, J.D. Speight, V.S.J. Mann, R.S. Sheridan, A. Bradshaw, I.R. Harris, and A.J. Williams, J. Clean. Prod. 104, 236 (2015). https://doi.org/10.1016/j.jclepro.2015.05.033.

    Article  Google Scholar 

  55. Y. Chen and Y. Luo, J. Iron. Steel Res. Int. 13, 303 (2006). https://doi.org/10.1016/S1006-706X(08)60199-5.

    Article  Google Scholar 

  56. International Energy Agency - IEA, [Online]. https://webstore.iea.org/electricity-information-2019. Accessed 06 Dec 2019.

  57. G.G. Zaimes, B.J. Hubler, S. Wang, and V. Khanna, ACS Sustain. Chem. Eng. 3, 237 (2015). https://doi.org/10.1021/sc500573b.

    Article  Google Scholar 

  58. Y. Gu, R.P. Schouwstra, and C. Rule, Miner. Eng. 58, 100 (2014). https://doi.org/10.1016/j.mineng.2014.01.020.

    Article  Google Scholar 

  59. European Commission, Study Rev. List Crit. Raw Mater. Crit. Raw Mater. Factsheets (2017). https://doi.org/10.2873/398823.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from the German Federal Ministry of Education and Research (BMBF) in the framework of the REGINA - Rare Earth Global Industry and New Applications - project (funding number 033R185B), promoted within the Framework Program FONA - Forschung für nachhaltige Entwicklung, under the funding priority CLIENT II - International Partnerships for Sustainable Innovation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. B. Fernandes or M. A. Reuter.

Ethics declarations

Conflict of interest

The content disclosed in this paper has no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1495 kb)

Appendix

Appendix

See Figs. 9 and 10.

Fig. 9
figure 9

Contribution of processes and resources used (material and energy) to various impact categories (six major sources presented).

Fig. 10
figure 10

Sensitivity analysis for global warming potential, acidification potential, and ionizing radiation for REM production.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernandes, I.B., Abadías Llamas, A. & Reuter, M.A. Simulation-Based Exergetic Analysis of NdFeB Permanent Magnet Production to Understand Large Systems. JOM 72, 2754–2769 (2020). https://doi.org/10.1007/s11837-020-04185-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04185-6

Navigation