Skip to main content

Advertisement

Log in

Size-dependent Creep Master Curve of Individual Electrospun Polymer Nanofibers

  • Research paper
  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

While there is great interest in polymer nanofibers due to their high strength, methods to measure their time-temperature superposition (TTS) curves are lacking. The objective of this work is to demonstrate one such method and thereby to predict room temperature creep compliance over many decades of time. A complimentary measurement is also presented to estimate the associated activation energy. The experimental method is demonstrated for polyacrylonitrile (PAN) nanofibers using an on-chip surface micromachined stepper motor actuator. It is first shown that the method yields good agreement with previous room temperature measurements. Subsequently, data up to 95 °C, near the glass transition temperature, is presented. Time-temperature superposition master curves are then constructed, and activation energies for two narrow diameter ranges (221 ± 27 nm and 150 ± 9 nm) are determined. The activation energy of the 221 nm fiber agrees well with the bulk PAN value, while the 150 nm fiber is 50% larger, indicating the importance of higher chain packing and reduced chain mobility in thinner fibers. TTS curves spanning 7 (221 nm) and 9 (150 nm) decades are presented. Over this time span the creep compliance increases by a factor of approximately 10 for each. This work demonstrates a viable method to measure polymer nanofiber TTS curves from which quantitative activation energy can be determined, and from which creep compliance values over time can be predicted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Williams ML, Landel RF, Ferry JD (1955) The Temperature Dependence of Relaxation Mechanisms in Amorphous Polymers and Other Glass-forming Liquids. Journal of the American Chemical Society 77(14):3701–3707, 1955/07/01

    Article  Google Scholar 

  2. Ferry JD (1980) Viscoelastic properties of polymers. John Wiley & Sons

  3. Meredith R, Hsu BS (1962) Stress relaxation in nylon and terylene: influence of strain, temperature, and humidity. J Polym Sci 61(172):253–270

    Article  Google Scholar 

  4. Howard WH, Williams ML (1963) The viscoelastic properties of oriented nylon 66 fibers: part I: creep at low loads and anhydrous conditions. Text Res J 33(9):689–696

    Article  Google Scholar 

  5. Wu H, Phoenix SL, Schwartz P (1988) Temperature dependence of lifetime statistics for single Kevlar 49 filaments in creep-rupture. J Mater Sci 23(5):1851–1860

    Article  Google Scholar 

  6. Alwis K, Burgoyne C (2006) Time-temperature superposition to determine the stress-rupture of aramid fibres. Appl Compos Mater 13(4):249–264

    Article  Google Scholar 

  7. Amiri A, Ulven C, Huo S (2015) Effect of chemical treatment of flax fiber and resin manipulation on service life of their composites using time-temperature superposition. Polymers 7(10):1965–1978

    Article  Google Scholar 

  8. Starkova O, Yang J, Zhang Z (2007) Application of time–stress superposition to nonlinear creep of polyamide 66 filled with nanoparticles of various sizes. Compos Sci Technol 67(13):2691–2698

    Article  Google Scholar 

  9. Fancey KS (2001) A latch-based Weibull model for polymeric creep and recovery. J Polym Eng 21(6):489–510

    Article  Google Scholar 

  10. Peterlin A (1977) Drawing and annealing of fibrous material. J Appl Phys 48(10):4099–4108

    Article  Google Scholar 

  11. Naraghi M, Kolluru PV, Chasiotis I (2014) Time and strain rate dependent mechanical behavior of individual polymeric nanofibers. Journal of the Mechanics and Physics of Solids 62:257–275

    Article  Google Scholar 

  12. Papkov D, Zou Y, Andalib MN, Goponenko A, Cheng SZ, Dzenis YA (2013) Simultaneously strong and tough ultrafine continuous nanofibers. ACS Nano 7(4):3324–3331

    Article  Google Scholar 

  13. Naraghi M, Ozkan T, Chasiotis I, Hazra SS, de Boer MP (2010) MEMS platform for on-chip nanomechanical experiments with strong and highly ductile nanofibers. J Micromech Microeng 20:125022

    Article  Google Scholar 

  14. Shin MK, Kim SI, Kim SJ, Kim S-K, Lee H, Spinks GM (2006) Size-dependent elastic modulus of single electroactive polymer nanofibers. Applied physics letters 89(23):231929

    Article  Google Scholar 

  15. Naraghi M, Arshad S, Chasiotis I (2011) Molecular orientation and mechanical property size effects in electrospun polyacrylonitrile nanofibers. Polymer 52(7):1612–1618

    Article  Google Scholar 

  16. Dayal P, Kyu T (2006) Porous fiber formation in polymer-solvent system undergoing solvent evaporation. Journal of applied physics 100(4):043512

    Article  Google Scholar 

  17. Yao J, Bastiaansen C, Peijs T (2014) High strength and high modulus electrospun nanofibers. Fibers 2(2):158–186

    Article  Google Scholar 

  18. Morgan P (2005) Carbon fibers and their composites. CRC press

  19. Arshad SN, Naraghi M, Chasiotis I (2011) Strong carbon nanofibers from electrospun polyacrylonitrile. Carbon 49(5):1710–1719

    Article  Google Scholar 

  20. Chawla S, Cai J, Naraghi M (2017) Mechanical tests on individual carbon nanofibers reveals the strong effect of graphitic alignment achieved via precursor hot-drawing. Carbon 117:208–219

    Article  Google Scholar 

  21. Tan E, Lim C (2004) Physical properties of a single polymeric nanofiber. Appl Phys Lett 84(9):1603–1605

    Article  Google Scholar 

  22. Lim C, Tan E, Ng S (2008) Effects of crystalline morphology on the tensile properties of electrospun polymer nanofibers. Applied Physics Letters 92(14):141908

    Article  Google Scholar 

  23. Pai C-L, Boyce MC, Rutledge GC (2011) Mechanical properties of individual electrospun PA 6 (3) T fibers and their variation with fiber diameter. Polymer 52(10):2295–2301

    Article  Google Scholar 

  24. Fennessey SF, Farris RJ (2004) Fabrication of aligned and molecularly oriented electrospun polyacrylonitrile nanofibers and the mechanical behavior of their twisted yarns. Polymer 45(12):4217–4225

    Article  Google Scholar 

  25. Cai J, Chawla S, Naraghi M (2016) Microstructural evolution and mechanics of hot-drawn CNT-reinforced polymeric nanofibers. Carbon 109:813–822

    Article  Google Scholar 

  26. Sniegowski JJ, de Boer MP (2000) IC-compatible polysilicon surface micromachining. Annu Rev Mater Sci 30:299–333

    Article  Google Scholar 

  27. de Boer MP, Luck DL, Ashurst WR, Corwin AD, Walraven JA, Redmond JM (2004) High-performance surface-micromachined inchworm actuator. Journal of Microelectromechanical Systems 13(1):63

    Article  Google Scholar 

  28. Shrestha R, Shen S, de Boer MP (2018) Preparing and Mounting Polymer Nanofibers onto Microscale Test Platforms, in Actuators, vol. 7, no. 4, p. 71: Multidisciplinary Digital Publishing Institute

  29. Grassie N, McGuchan R (1970) Pyrolysis of polyacrylonitrile and related polymers—I. thermal analysis of polyacrylonitrile. Eur Polym J 6(9):1277–1291

    Article  Google Scholar 

  30. Starkova O, Aniskevich A (2007) Limits of linear viscoelastic behavior of polymers. Mechanics of Time-Dependent Materials 11(2):111–126

    Article  Google Scholar 

  31. O'Connell P, McKenna G (2005) Rheological measurements of the thermoviscoelastic response of ultrathin polymer films. Science 307(5716):1760–1763

    Article  Google Scholar 

  32. Brinson HF, Brinson LC (2008) Polymer engineering science and viscoelasticity: an introduction

  33. O’Connell PA, McKenna GB (1999) Arrhenius-type temperature dependence of the segmental relaxation below T g. J Chem Phys 110(22):11054–11060

    Article  Google Scholar 

  34. Fu Q, Jin Y, Song X, Gao J, Han X, Jiang X, Zhao Q, Yu D (2010) Size-dependent mechanical properties of PVA nanofibers reduced via air plasma treatment. Nanotechnology 21(9):095703

    Article  Google Scholar 

  35. Nikonov A, Davies AR, Emri I (2005) The determination of creep and relaxation functions from a single experiment. J Rheol 49(6):1193–1211

    Article  Google Scholar 

  36. Knauss WG, Zhao J (2007) Improved relaxation time coverage in ramp-strain histories. Mechanics of Time-Dependent Materials 11(3–4):199–216

    Article  Google Scholar 

  37. Gergesova M, Zupančič B, Saprunov I, Emri I (2011) The closed form tTP shifting (CFS) algorithm. J Rheol 55(1):1–16

    Article  Google Scholar 

  38. Fesko D, Tschoegl N (1971) Time-temperature superposition in thermorheologically complex materials," in Journal of Polymer Science Part C: Polymer Symposia, vol. 35, no. 1, pp. 51–69: Wiley Online Library

  39. Thompson EV (1980) Mechanical properties of cast acrylonitrile polymers. 1. Polyacrylonitrile. Macromolecules 13(1):132–136

    Article  Google Scholar 

  40. Lin Y, Shangguan Y, Zuo M, Harkin-Jones E, Zheng Q (2012) Effects of molecular entanglement on molecular dynamics and phase-separation kinetics of poly (methyl methacrylate)/poly (styrene-co-maleic anhydride) blends. Polymer 53(6):1418–1427

    Article  Google Scholar 

  41. Moore R, Gieniewski C (1969) Interpretation of the tensile creep response of an ABS polymer. Polym Eng Sci 9(3):190–196

    Article  Google Scholar 

  42. Meredith R, Hsu BS (1962) Dynamic bending properties of fibers: effect of temperature on nylon 66, terylene, orlon, and viscose rayon. J Polym Sci 61(172):271–292

    Article  Google Scholar 

  43. Hayakawa R, Nishi T, Arisawa K, Wada Y (1967) Dielectric relaxation in the paracrystalline phase in polyacrylonitrile. Journal of Polymer Science Part A-2: Polymer Physics 5(1):165–177

    Article  Google Scholar 

  44. Sawyer L, Grubb D, Meyers GF (2008) Polymer microscopy. Springer Science & Business Media

  45. O'Connell P, Bonner M, Duckett R, Ward I (2003) Effect of molecular weight and branch content on the creep behavior of oriented polyethylene. J Appl Polym Sci 89(6):1663–1670

    Article  Google Scholar 

  46. Matsumoto D (1988) Time-temperature superposition and physical aging in amorphous polymers. Polym Eng Sci 28(20):1313–1317

    Article  Google Scholar 

Download references

Funding

This work was supported by the US National Science Foundation (NSF) under award CMMI-1334630.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. P. de Boer.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shrestha, R., Cai, J., Naraghi, M. et al. Size-dependent Creep Master Curve of Individual Electrospun Polymer Nanofibers. Exp Mech 60, 763–773 (2020). https://doi.org/10.1007/s11340-020-00593-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-020-00593-6

Keywords

Navigation