Skip to main content

Advertisement

Log in

Diversity snapshot of green–gray space ants in two Mexican cities

  • Original Research Article
  • Published:
International Journal of Tropical Insect Science Aims and scope Submit manuscript

Abstract

This study evaluates changes in the diversity and composition of ants that inhabit contrasting environmental conditions (green and gray spaces) in two cities of different size and degree of urbanization: Xalapa and Coatepec (Veracruz, Mexico), both of which are surrounded by cloud forest remnants, croplands and pastures. In each city, a green space and a gray space of similar area were selected (~ 31 ha) and ten sampling sites were randomly placed within each environment. Tuna in oil and honey were used as baits to collect soil ants, entomological nets to capture vegetation ants and Winkler sacks for leaf-litter ants. Ant species richness (0D) and diversity (1D) was greater in Coatepec (the smaller and less urbanized city) than in Xalapa. However, the pattern observed when comparing green and gray spaces differed between the cities: the greatest diversity (0D and 1D) was observed in the gray space of Coatepec and the lowest diversity in the green space of Xalapa. In both cities, the similarity of species composition between habitat conditions was close to 50% and the comparison of green spaces between the cities showed that these are more different to each other than is the case with the gray spaces. These results suggest that the characteristics of each city influence the ant diversity contained in green and gray spaces differently and can promote differentiation in species composition within the same city.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alonso LE, Agosti D (2000) Biodiversity studies, monitoring, and ants: an overview. In: Agosti D, Majer JD, Alonso L.E, Schultz TR (eds) Ants: standard methods for measuring and monitoring biodiversity. Smithsonian Institution Press, Washington, DC pp 1–8

  • Armbrecht I, Perfecto I (2003) Litter-twig dwelling ant species richness and predation potential within a forest fragment and neighboring coffee plantations of contrasting habitat quality in Mexico. Agric Ecosyst Environ 97(1–3):107–115

    Google Scholar 

  • Beninde J, Veith M, Hochkirch A (2015) Biodiversity in cities needs space: a meta-analysis of factors determining intra-urban biodiversity variation. Ecol Lett 18(6):581–592

    PubMed  Google Scholar 

  • Benítez G, Pérez-Vázquez A, Nava-Tablada M, Equihua M, Álvarez-Palacios JL (2012) Urban expansion and the environmental effects of informal settlements on the outskirts of Xalapa city, Veracruz, Mexico. Environ Urban 24(1):149–166

    Google Scholar 

  • Bestelmeyer BT, Agosti D, Alonso LE, Brandao CRF, Brown WL Jr, JHC D, Silvestre R (2000) Field techniques for the study of ground-dwelling ants. In: Agosti D, Majer JD, Alonso LE, Schultz TR (eds) Ants: standard methods for measuring and monitoring biodiversity. Smithsonian Institution Press, Washington, DC, pp 122–144

    Google Scholar 

  • Bolton B (1994) Identification guide to the ant genera of the world. Harvard University Press, Massachusetts

    Google Scholar 

  • Brown PH, Miller DM, Brewster CC, Fell RD (2013) Biodiversity of ant species along a disturbance gradient in residential environments of Puerto Rico. Urban Ecosyst 16(2):175–192

    Google Scholar 

  • Carbó-Ramírez P, Zuria I (2011) The value of small urban green spaces for birds in a Mexican city. Landsc Urban Plan 100:213–222

    Google Scholar 

  • Čeplová N, Kalusová V, Lososová Z (2017) Effects of settlement size, urban heat island and habitat type on urban plant biodiversity. Landsc Urban Plan 159:15–22

    Google Scholar 

  • Chao A, Jost L (2012) Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology 93:2533–2547

    PubMed  Google Scholar 

  • Chávez-Alaffita L (2014) Áreas naturales urbanas intervenidas como espacios públicos abiertos. Caso de estudio: la Ciudad de Xalapa, Ver. (2003–2013). Dissertation. Universidad Veracruzana, Xalapa, Mexico

  • Chen H, Boutros PC (2011) VennDiagram: a package for the generation of highly-customizable Venn and Euler diagrams in R. BMC Bioinform 12(1):35

    Google Scholar 

  • Chong KY, Teo S, Kurukulasuriya B, Chung YF, Rajathurai S, Tan HTW (2014) Not all green is as good: different effects of the natural and cultivated components of urban vegetation on bird and butterfly diversity. Biol Conserv 171:299–309

    Google Scholar 

  • Clark PJ, Reed JM, Chew FS (2007) Effects of urbanization on butterfly species richness, guild structure, and rarity. Urban Ecosyst 10(3):321–337

    Google Scholar 

  • Consejo Nacional de Población (CONAPO) (2010) Proyecciones de la población de los municipios 2010–2050. http://www.conapo.gob.mx/es/CONAPO/Proyecciones_Datos. Accessed 26 July 2018

  • Cruz A, Escobar F, Gerez P, Muñiz-Castro MA, Ramírez F, Williams G (2010) Centro de Veracruz. In: Toledo Aceves T (ed) El Bosque Mesófilo de Montaña en México: Amenazas y oportunidades para su conservación y manejo sostenible. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, México, pp 80–87

    Google Scholar 

  • Cumming G, Fidler F, Vaux DL (2007) Error bars in experimental biology. J Cell Biol 177:7–11

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cupul-Magaña FG (2009) Diversidad y abundancia de hormigas (Formicidae) en las viviendas de Puerto Vallarta, Jalisco, México. Ecol Aplicada 8(1–2):115–117

    Google Scholar 

  • Daniels G, Kirkpatrick J (2006) Does variation in garden characteristics influence the conservation of birds in suburbia? Biol Conserv 133:326–335

    Google Scholar 

  • Faeth SH, Warren PS, Shochat E, Marussich WA (2005) Trophic dynamics in urban communities. AIBS Bull 55(5):399–407

    Google Scholar 

  • Falfán I, MacGregor-Fors I (2016) Woody neotropical streetscapes: a case study of tree and shrub species richness and composition in Xalapa. Madera Bosques 22(1):95–110

    Google Scholar 

  • Ferenc M, Sedláček O, Fuchs R, Dinetti M, Fraissinet M, Storch D (2014) Are cities different? Patterns of species richness and beta diversity of urban bird communities and regional species assemblages in Europe. Glob Ecol Biogeogr 23(4):479–489

    Google Scholar 

  • Fontana S, Sattler T, Bontadina F, Moretti M (2011) How to manage the urban green to improve bird diversity and community structure. Landsc Urban Plan 101(3):278–285

    Google Scholar 

  • García-Martínez MA, Martínez-Tlapa DL, Pérez-Toledo GR, Quiroz-Robledo LN, Valenzuela-González JE (2015) Myrmecofauna (Hymenoptera: Formicidae) response to habitat characteristics of tropical montane cloud forests in Central Veracruz, Mexico. Fla Entomol 99(2):1–9

    Google Scholar 

  • García-Martínez MA, Escobar-Sarria F, López-Barrera F, Castaño-Meneses G, Valenzuela-González JE (2016) Value of riparian vegetation remnants for leaf-litter ants in a human-dominated landscape. Environ Entomol 44(6):1488–1497

    Google Scholar 

  • Gibb H, Hochuli DF (2002) Habitat fragmentation in an urban environment: large and small fragments support different arthropod assemblages. Biol Conserv 106(1):91–100

    Google Scholar 

  • Gobierno del Estado de Veracruz, SEFIPLAN, Sistema de Información Municipal. 2016. Cuadernillos municipales. Coatepec. http://ceieg.veracruz.gob.mx/wp-content/uploads/sites/21/2016/05/Xalapa.pdf. Accessed 5 January 2017

  • Gotzek D, Axen HJ, Suarez AV, Helms Cahan S, Shoemaker D (2015) Global invasion history of the tropical fire ant: a stowaway on the first global trade routes. Mol Ecol 24(2):374–388

    PubMed  Google Scholar 

  • Grimm NB, Faeth SH, Golubiewski NE, Redman CL, Wu J, Bai X, Briggs JM (2008) Global change and the ecology of cities. Science 319(5864):756–760

    CAS  PubMed  Google Scholar 

  • Helanterä H, Strassmann JE, Carrillo J, Queller DC (2009) Unicolonial ants: where do they come from, what are they and where are they going? Trends Ecol Evol 24(6):341–349

    PubMed  Google Scholar 

  • Holway DA, Lach L, Suarez AV, Tsutsui ND, Case TJ (2002) The causes and consequences of ant invasions. Annu Rev Ecol Syst 33:181–233

    Google Scholar 

  • Hsieh T, Ma K, Chao A (2016) iNEXT: an R package for rarefaction and extrapolation of species diversity (hill numbers). Methods Ecol Evol 7:1451–1456

    Google Scholar 

  • Instituto Nacional de Estadística, Geografía e Informática (INEGI) (2009) Prontuario de información geográfica municipal de los Estados Unidos Mexicanos-Xalapa, Veracruzhttp://www3.inegi.org.mx/contenidos/app/mexicocifras/datos_geograficos/30/30087.pdf. Accessed 3 April 2018

  • Instituto Nacional de Estadística y Geografía (INEGI) (2010) Censo de población y vivienda 2010. micro datos para Veracruz de Ignacio de la Llave. INEGI. https://www.inegi.org.mx/programas/ccpv/2010/default.html#Microdatos. Accessed 3 April 2018

  • Jost L (2006) Entropy and diversity. Oikos 113:363–375

    Google Scholar 

  • Jost L, Chao A, Chazdon RL (2011) Compositional similarity and β (beta) diversity. In: Magurran AE, McGill BJ (eds) Biological diversity: frontiers in measurement and assessment. Oxford University Press, New York, pp 66–84

    Google Scholar 

  • Kaspari M (2000) A primer on ant ecology. In: Agosti D, Majer JD, Alonso LE, Schultz TR (eds) Ants: standard methods for measuring and monitoring biodiversity. Smithsonian Institution Press, Washington, DC, pp 9–24

    Google Scholar 

  • Kumar S, LeBrun EG, Stohlgren TJ, Stabach JA, McDonald DL, Oi DH, LaPolla JS (2015) Evidence of niche shift and global invasion potential of the tawny crazy ant, Nylanderia fulva. Ecol Evol 5(20):4628–4641

    PubMed  PubMed Central  Google Scholar 

  • Lemoine-Rodríguez R (2012) Cambios en la cobertura vegetal de la ciudad de Xalapa-Enríquez, Veracruz y zonas circundantes entre 1950 y 2010. Dissertation, Universidad Veracruzana, Xalapa, México

  • Lemoine-Rodríguez R, MacGregor-Fors I, Muñoz-Robles C (2019) Six decades of urban green change in a neotropical city: a case study of Xalapa, Veracruz. Mexico Urban Ecosyst:1–10

  • López-Falfán IS (2017) Cobertura, riqueza, composición de especies y percepción social de la vegetación urbana de Xalapa y Coatepec, Veracruz. Dissertation, Instituto de Ecología. A.C. México

  • López-Moreno IR, Diaz-Betancourt ME, Suarez-Landa T (2003) Insectos sociales en ambientes antropizados: Las hormigas de la ciudad de Coatepec, Veracruz, México. Sociobiology 42(3):604–622

    Google Scholar 

  • Łopucki R, Kitowski I (2017) How small cities affect the biodiversity of ground-dwelling mammals and the relevance of this knowledge in planning urban land expansion in terms of urban wildlife. Urban Ecosyst 20(4):933–943

    Google Scholar 

  • MacGregor-Fors I, Schondube JE (2011) Gray vs. green urbanization: relative importance of urban features for urban bird communities. Basic Appl Ecol 12(4):372–381

    Google Scholar 

  • MacGregor-Fors I, Avendaño-Reyes S, Bandala VM, Chacón-Zapata S, Díaz-Toribio MH et al (2015) Multi-taxonomic diversity patterns in a neotropical green city: a rapid biological assessment. Urban Ecosyst 18(2):633–647

    Google Scholar 

  • MacGregor-Fors I, Escobar F, Rueda-Hernández R, Avendaño-Reyes S, Baena ML et al (2016) City “green” contributions: the role of urban greenspaces as reservoirs for biodiversity. Forests 7(7):1–14

    Google Scholar 

  • Mackay WP, Mackay EE (1989) The ants of New Mexico (Hymenoptera: Formicidae). Lewiston, Edwin Mellen Press, New York

    Google Scholar 

  • Magura T, Tóthmérész B, Molnár T (2004) Changes in carabid beetle assemblages along an urbanization gradient in the city of Debrecen, Hungary. Landsc Ecol 19:747–759

    Google Scholar 

  • Magurran AE (2004) Measuring biological diversity. Blackwell Publishing, Oxford

    Google Scholar 

  • Majer JD, Brown KR (1986) The effects of urbanization on the ant fauna of the swan coastal plain near Perth, Western Australia. J Roy Soc West Aust 69:13–18

    Google Scholar 

  • McKinney ML (2006) Urbanization as a major cause of biotic homogenization. Biol Conserv 127(3):247–260

    Google Scholar 

  • McKinney ML, Lockwood JL (1999) Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends Ecol Evol 14(11):450–453

    CAS  PubMed  Google Scholar 

  • Møller A, Diaz M, Flensted-Jensen E, Grim T, Ibáñez-Álamo et al (2012) High urban population density of birds reflects their timing of urbanization. Oecologia 170(3):867–875

    PubMed  Google Scholar 

  • Nielsen AB, Van Den Bosch M, Maruthaveeran S, Van den Bosch CK (2014) Species richness in urban parks and its drivers: a review of empirical evidence. Urban Ecosyst 17(1):305–327

    Google Scholar 

  • Ortiz-Rodríguez AM (2015) Propuesta de un programa de manejo para el área natural protegida Cerro de Macuiltépetl ubicada en la ciudad de Xalapa, Veracruz. Dissertation, Universidad Veracruzana. México

  • Parris KM, Amati M, Bekessy SA, Dagenais D, Fryd O et al (2018) The seven lamps of planning for biodiversity in the city. Cities 83:44–53

    Google Scholar 

  • Pećarević M, Danoff-Burg J, Dunn RR (2010) Biodiversity on Broadway-enigmatic diversity of the societies of ants (Formicidae) on the streets of New York City. PLoS One 5(10):e13222

    PubMed  PubMed Central  Google Scholar 

  • Penick CA, Savage AM, Dunn RR (2015) Stable isotopes reveal links between human food inputs and urban ant diets. Proc R Soc B 282(1806):20142608

    PubMed  Google Scholar 

  • Perfecto I (1991) dynamics of Solenopsis geminata in a tropical fallow field after ploughind. Oikos 62:139–144

    Google Scholar 

  • Perfecto I (1994) Foraging behavior as a determinant of asymmetric competitive interactions between two ant species in a tropical agroecosystem. Oecologia 98:184–192

    PubMed  Google Scholar 

  • Perfecto I, Vandermeer J (2002) Quality of agroecological matrix in a tropical montane landscape: ants in coffee plantations in southern Mexico. Conserv Biol 16(1):174–182

    Google Scholar 

  • Philpott SM, Cotton J, Bichier P, Friedrich RL, Moorhead LC, Uno S, Valdez M (2014) Local and landscape drivers of arthropod abundance, richness, and trophic composition in urban habitats. Urban Ecosyst 17(2):513–532

    Google Scholar 

  • Plentovich S, Hebshi A, Conant S (2009) Detrimental effects of two widespread invasive ant species on weight and survival of colonial nesting seabirds in the Hawaiin Islands. Biol Invasions 11:289–298

    Google Scholar 

  • Pulliam HR (1988) Sources, sinks, and population regulation. Am Nat 132:652–661

    Google Scholar 

  • Ramalho CE, Hobbs RJ (2012) Time for a change: dynamic urban ecology. Trends Ecol Evol 27:179–189

    PubMed  Google Scholar 

  • Risch SJ, Carroll CR (1982) Effect of a keystone predaceous ant, Solenopsis geminata, on arthropods in a tropical agroecosystem. Ecology 63:1979–1983

    Google Scholar 

  • Rzedowski J (1996) Análisis preliminar de la flora vascular de los bosques mesófilos de montaña de México. Acta Bot Mex 35:25–44

    Google Scholar 

  • Santos NM (2016) Research on urban ants: approaches and gaps. Insect Soc 63(3):359–371

    Google Scholar 

  • Santos NM, Delabie JHC, Queiroz JM (2019) Biodiversity conservation in urban parks: a study of ground-dwelling ants (Hymenoptera: Formicidae) in Rio de Janeiro City. Urban Ecosyst 22:927–942. https://doi.org/10.1007/s11252-019-00872-8

    Article  Google Scholar 

  • Savage AM, Hackett B, Guénard B, Youngsteadt EK, Dunn RR (2014) Fine-scale heterogeneity across Manhattan's urban habitat mosaic is associated with variation in ant composition and richness. Insect Conserv Divers 8(3):216–228

    Google Scholar 

  • Secretaría de Desarrollo Social (SEDESOL) (2011) La expansión de las ciudades 1980–2010. Secretaría de Desarrollo Social, México, pp 1–62

    Google Scholar 

  • Siemann E, Tilman D, Haarstad J (1998) Experimental tests of the dependence of arthropod diversity on plant diversity. Am Nat 152:738–750

    CAS  PubMed  Google Scholar 

  • Sorace A, Gustin M (2010) Bird species of conservation concern along urban gradients in Italy. Biodivers Conserv 19:205–221

    Google Scholar 

  • Travis BV (1941) Notes on the biology of the fire ant Solenopsis geminata (F.) in Florida and Georgia. Fla Entomol 24(1):15–22

    Google Scholar 

  • Uno S, Cotton J, Philpott SM (2010) Diversity, abundance, and species composition of ants in urban green spaces. Urban Ecosyst 13(4):425–441

    Google Scholar 

  • Valenzuela-González J, Quiroz-Robledo L, Martínez-Tlapa D (2008) Hormigas (Insecta: Hymenoptera: Formicidae). In: Manson RH, Hernández-Ortíz V, Gallina S, Mehltreter K (eds) Agroecosistemas cafetaleros de Veracruz: biodiversidad, manejo y conservación. Instituto de Ecología de Instituto A.C, Xalapa, pp 107–122

    Google Scholar 

  • Vázquez-Torres SM, Carvajal-Hernandez CI, Aquino-Zapata AM (2010) Áreas Naturales Protegidas. In: Bedtez-Badillo G, Welsh-Rodnguez C (eds) Atlas del patrimonio natural, histórico y cultural de Veracruz, vol 1. Xalapa, Veracruz, pp 249–274

    Google Scholar 

  • Vergnes A, Blouin M, Muratet A, Lerch TZ, Mendez-Millan M et al (2017) Initial conditions during Technosol implementation shape earthworms and ants diversity. Landsc Urban Plan 159:32–41

    Google Scholar 

  • Vignoli L, Mocaer I, Luiselli L, Bologna MA (2009) Can a large metropolis sustain complex herpetofauna communities? An analysis of the suitability of green space fragments in Rome. Anim Conserv 12:456–466

    Google Scholar 

  • Wang G, Zuo J, Li XR, Liu Y, Yu J et al (2014) Low plant diversity and floristic homogenization in fast-urbanizing towns in Shandong peninsular, China: effects of urban greening at regional scale for ecological engineering. Ecol Eng 64:179–185

    Google Scholar 

  • Wilde HD, Gandhi KJ, Colson G (2015) State of the science and challenges of breeding landscape plants with ecological function. Horticul Res 2:1–8

    Google Scholar 

  • Williams-Linera G, Manson RH, Vera EI (2002) La fragmentación del bosque mesófilo de montaña y patrones de uso del suelo en la región oeste de Xalapa, Veracruz, México. Madera Bosques 8(1):73–89

    Google Scholar 

  • Wolda H (1981) Similarity indices, sample size and diversity. Oecologia 50:296–302

    PubMed  Google Scholar 

  • Youngsteadt E, Henderson RC, Savage AM, Ernst AF, Dunn RR, Frank SD (2014) Habitat and species identity, not diversity, predict the extent of refuse consumption by urban arthropods. Glob Chang Biol 21(3):1103–1115

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support received from (PRODEP) through grant No. DSA/103.5/15/7127 awarded to the first author. We obtained collection permits from the Subdirectorate for the Environment under the official reference number SMA/0975/2015. We thank Ian MacGregor-Fors for his input and comments and, preparation of Fig. 1. Diana M. Méndez, Paola A. González and Jaime Pelayo for their help in the field. We also thank Gibran Pérez Toledo, Dora Luz Martinez Tlapa and John Longino for taxonomic identification of ants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Escobar.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baena, M.L., Escobar, F. & Valenzuela, J.E. Diversity snapshot of green–gray space ants in two Mexican cities. Int J Trop Insect Sci 40, 239–250 (2020). https://doi.org/10.1007/s42690-019-00073-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42690-019-00073-y

Keywords

Navigation