Skip to main content

Advertisement

Log in

Shock response of polymer-bonded copper powder

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

The shock response of a polymer-bonded copper powder was investigated by means of plate impact experiments in a gas gun (pressure range 1–8 GPa) and using in-contact explosive loading (pressures up to 37 GPa). Stress gauges were used to determine the material shock states in the planar impact, and the experimental data of shock and particle velocities (U, u) were fitted to a straight line giving a Hugoniot equation of state \({U=(0.85\pm 0.08)+(2.64\pm 0.05)\;u}\). In the explosive loading experiments, the shock speed in the material was measured using optical methods, and impedance matching was performed to determine the shock state in the sample. Comparison between the two experiments shows that the states attained in the lower-pressure range (planar impact experiments) and higher-pressure range (explosive loading) follow the same Hugoniot curve, within 4% deviation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Pachman, J., Kunzel, M., Kubat, K., Selesovsky, J., Marsalek, R., Pospisil, M., Kubicek, M., Prokes, A.: OPTIMEX: measurement of detonation front curvature with a passive fiber optical system. Cent. Eur. J. Energ. Mater. 13(4), 807–820 (2016). https://doi.org/10.22211/cejem/62776

    Article  Google Scholar 

  2. Mark Short, M., Quirk, J.J.: High explosive detonation–confiner interactions. Annu. Rev. Fluid Mech. 50(1), 215–242 (2018). https://doi.org/10.1146/annurev-fluid-122316-045011

    Article  MathSciNet  MATH  Google Scholar 

  3. Explosia, S.A.: Special products. https://explosia.cz/en/products-2/special-products/other-special-products. Accessed 11 Nov 2018

  4. Walters, W.P., Zukas, J.A.: Fundamentals of Shaped Charges. Wiley, Hoboken (1989)

    Google Scholar 

  5. Cardoso Anastacio, A.: Explosive acceleration of polymer bonded copper powder. PhD Thesis, University of Pardubice, Pardubice, Czech Republic (2018)

  6. Davison, L.: Fundamentals of Shock Wave Propagation in Solids. Springer, Berlin (2008)

    MATH  Google Scholar 

  7. Marsh, S.P. (ed.): LASL Shock Hugoniot Data. University of California Press, Berkeley (1980)

    Google Scholar 

  8. Carter, W.J., Marsh, S.P.: Hugoniot Equation of State of Polymers. Los Alamos National Laboratory Report LA-13006-MS, Los Alamos (1995). https://doi.org/10.2172/95183

  9. Setchell, R.E., Anderson, S.T., Montgomery, M.U.: Compositional effects on the shock-compression response of alumina-filled epoxy. J. Appl. Phys. 101, 083527 (2007). https://doi.org/10.1063/1.2719012

    Article  Google Scholar 

  10. Setchell, R.E., Anderson, M.U.: Shock-compression response of an alumina-filled epoxy. J. Appl. Phys. 97, 083518 (2005). https://doi.org/10.1063/1.1868055

    Article  Google Scholar 

  11. Mock, W., Holt, W.H.: Shock Wave Compression of an Alumina-Filled Epoxy. Armaments Development Department, Arlington (1976)

    Google Scholar 

  12. Millett, J.C.F., Bourne, N.K., Deas, D.: The equation of state of two alumina-filled epoxy resins. J. Phys. D: Appl. Phys. 38, 930–934 (2005). https://doi.org/10.1088/0022-3727/38/6/023

    Article  Google Scholar 

  13. Bourne, N.: Materials in Mechanical Extremes: Fundamentals and Applications. University of Cambridge Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139152266

    Book  Google Scholar 

  14. Zhernokletov, M.V.: Methods and devices for producing intense shock loads. In: Zhernokletov, M.V., Glushak, B.L. (eds.) Material Properties Under Intensive Dynamic Loading, pp. 34–69. Springer, Berlin (2006). https://doi.org/10.1007/978-3-540-36845-8

    Chapter  Google Scholar 

  15. Cooper, P.W.: Explosives Engineering. Wiley-WCH, Inc., New York (1996)

    Google Scholar 

  16. Zukas, J.A., Walters, W.: Explosive Effects and Applications. Springer, New York (1998). https://doi.org/10.1007/978-1-4612-0589-0

    Book  Google Scholar 

  17. Forbes, J.W.: Shock Wave Compression of Condensed Matter. Springer, Berlin (2012). https://doi.org/10.1007/978-3-642-32535-9

    Book  Google Scholar 

  18. Storti, F., Balsamo, F.: Particle size distributions by laser diffraction: sensitivity of granular matter strength to analytical operating procedures. Solid Earth 1, 25–48 (2010). https://doi.org/10.5194/se-1-25-2010

    Article  Google Scholar 

  19. Pachman, J., Kunzel, M., Kubat, K., Selesovsky, J., Marsalek, R., Pospisil, M., Kubicek, M., Prokes, A.: OPTIMEX: measurement of detonation velocity with a passive optical fibre system. Cent. Eur. J. Energ. Mater. 14(1), 233–250 (2017). https://doi.org/10.22211/cejem/64901

    Article  Google Scholar 

  20. Rosenberg, Z., Yaziv, D., Partom, Y.: Calibration of foil-like manganin gauges in planar shock experiments. J. Appl. Phys. 51, 3702–3705 (1980). https://doi.org/10.1063/1.328155

    Article  Google Scholar 

  21. Pachman, J., Kunzel, M., Nemec, O., Majzlik, J.: A comparison of methods for detonation pressure measurement. Shock Waves 28(2), 217–225 (2018). https://doi.org/10.1007/s00193-017-0761-5

    Article  Google Scholar 

  22. Proud, W.G., Wang, J., Cross, D.L.A.: The effect of sample roughness and planarity on gauge response times. In: Furnish, M.D., Elert, M., Russel, T.P., White, C.T. (eds.) Shock Compression Condensed Matter, AIP Conference Proceedings 845:1, pp. 1203–1206 (2006). https://doi.org/10.1063/1.2263540

  23. Hazel, P.J., Stennett, C., Cooper, G.: The effect of specimen thickness on the shock propagation along the in-fibre direction of an aerospace-grade CFRP laminate. Compos. Part A: Appl. Sci. Manuf. 40, 204–209 (2009). https://doi.org/10.1016/j.compositesa.2008.11.002

    Article  Google Scholar 

  24. Jordan, J.L., Dattelbaum, D.M., Sutherland, G., Richards, D.W., Sheffield, S.A., Dick, R.D.: Shock equation of state of a multi-phase epoxy based composite (\({\text{ Al }}{-}{\text{ MnO }}_2\)-epoxy). J. Appl. Phys. 107, 103528 (2010). https://doi.org/10.1063/1.3357314

    Article  Google Scholar 

  25. Chen, H., Tang, W., She, J., Ran, X., Xu, Z.: The PUFF equation of state parameters for synthetic rubber. Mech. Mater. 43, 69–74 (2011). https://doi.org/10.1016/j.mechmat.2010.12.001

    Article  Google Scholar 

  26. Klee, C., Kroh, M., Ludwig, D.: Experiments on the attenuation of shock waves in condensed matter. AIP Conf. Proc. 78, 486–490 (1982). https://doi.org/10.1063/1.33311

    Article  Google Scholar 

  27. Khurana, R., Gautam, P.C., Rai, R., Kumar, A., Sharma, A.C., Singh, M.: Studies on shock attenuation in plastic materials and application in wave shaping. J. Phys. Conf. Ser. 377, 012051 (2012). https://doi.org/10.1088/1742-6596/377/1/012051

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the University of Pardubice Grant SGS-2019-002. We would like to thank the employees from the Research Institute of Industrial Chemistry, Explosia Ltd., in Czech Republic, especially Ladislav Riha for preparing the polymer-bonded copper samples. We also thank Petr Belina from the Department of Inorganic Technology in the University of Pardubice for performing the granulometry analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Pachman.

Additional information

Communicated by A. Higgins and E. Timofeev.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anastacio, A.C., Braithwaite, C., Kucera, J. et al. Shock response of polymer-bonded copper powder. Shock Waves 30, 373–384 (2020). https://doi.org/10.1007/s00193-020-00939-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-020-00939-y

Keywords

Navigation