Skip to main content
Log in

Effect of Dipolar Interaction on Information Entropy in Precession Bose-Einstein Condensates

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this paper, we study the formation of Shannon information entropy in a two axes rotating precessing Bose-Einstein condensates subject to dipole-dipole interactions. Our results show that how the Shannon information entropy depends on the second rotational frequency Ωx and dipole strength gd. With the increasing of gd, the position component Sr increases and momentum component Sk decreases at the same Ωx. Furthermore, we find that Landsberg’s order parameter η monotonically decreases with increasing Ωx and η increases with increasing gd at the same Ωx. Finally, we find that the increasing of dipole strength has no effect on the dynamic formation process of information entropy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Tsubota, M., Kasamatsu, K., Kobayashi, M.: Quantized Vortices in Superfluid Helium and Atomic Bose-Einstein Condensates. Oxford University Press, Oxford (2013)

    Book  Google Scholar 

  2. Fetter, A.L.: Rev. Mod. Phys. 81, 647 (2009)

    Article  ADS  Google Scholar 

  3. Engels, P., Coddington, I., Haljan, P.C., Cornell, E.A.: Phys. Rev. Lett. 89, 100403 (2002)

    Article  ADS  Google Scholar 

  4. Coddington, I., Engels, P., Schweikhard, V., Cornell, E.A.: Phys. Rev. Lett. 91, 100402 (2003)

    Article  ADS  Google Scholar 

  5. Smith, N.L., Heathcote, W.H., Krueger, J.M., Foot, C.J.: Phys. Rev. Lett. 93, 080406 (2004)

    Article  ADS  Google Scholar 

  6. Schweikhard, V., Coddington, I., Engels, P., Tung, S., Cornell, E.A.: Phys. Rev. Lett. 93, 210403 (2004)

    Article  ADS  Google Scholar 

  7. Tung, S., Schweikhard, V., Cornell, E.A.: Phys. Rev. Lett. 97, 240402 (2006)

    Article  ADS  Google Scholar 

  8. Anderson, B.P., Haljan, P.C., Regal, C.A., Feder, D.L., Collins, L.A., Clark, C.W., Cornell, E.A.: Phys. Rev. Lett. 86, 2926 (2001)

    Article  ADS  Google Scholar 

  9. Dutton, Z., Budde, M., Slowe, C., Hau, L.V.: Science 293, 663 (2001)

    Article  ADS  Google Scholar 

  10. Ku, M.J.H., Mukherjee, B., Yefsah, T., Zwierlein, M.W.: Phys. Rev. Lett. 116, 045304 (2016)

    Article  ADS  Google Scholar 

  11. Yi, S., Pu, H.: Phys. Rev. A 73(R), 061602 (2006)

    Article  ADS  Google Scholar 

  12. Wen, L.H., Xiong, H.W., Wu, B.: Phys. Rev. A 82, 053627 (2010)

    Article  ADS  Google Scholar 

  13. Mithun, T., Porsezian, K., Dey, B.: Phys. Rev. A 89, 053625 (2014)

    Article  ADS  Google Scholar 

  14. Tsubota, M., Kasamatsu, K., Ueda, M.: Phys. Rev. A 65, 023603 (2002)

    Article  ADS  Google Scholar 

  15. Matthews, M.R., Anderson, B.P., Haljan, P.C., Hall, D.S., Wieman, C.E., Cornell, E. A.: Phys. Rev. Lett. 83, 2498 (1999)

    Article  ADS  Google Scholar 

  16. Madison, K.W., Chevy, F., Wohlleben, W., Dalibard, J.: Phys. Rev. Lett. 84, 806 (2001)

    Article  ADS  Google Scholar 

  17. Lin, Y.J., Compton, R.L., Perry, A.R., Phillips, W.D., Porto, J.V., Spielman, I.B.: Phys. Rev. Lett. 102, 130401 (2009)

    Article  ADS  Google Scholar 

  18. Lin, Y.J., Compton, R.L., Jiménez-García, K., Porto, J.V., Spielman, I. B.: Nature 462, 628 (2009)

    Article  ADS  Google Scholar 

  19. Price, R.M., Trypogeorgos, D., Campbell, D.L., Putra, A., Valdés-Curiel, A., Spielman, I.B.: New. J. Phys. 18, 113009 (2016)

    Article  ADS  Google Scholar 

  20. Driben, R., Konotop, V.V., Meier1, T.: Sci. Rep. 6, 22758 (2016)

  21. Kevrekidis, P.G., Wang, W.L., Carretero-González, R., Frantzeskakis, D.J., Xie, S. Q.: Phys. Rev. A 96, 043612 (2017)

    Article  ADS  Google Scholar 

  22. Fukushima, S., Tsubota, M., Low, J.: Temp. Phys. 158, 370 (2010)

    Article  ADS  Google Scholar 

  23. Bialynicki-Birula, I., Mycielski, J.: Commun. Math. Phys. 44, 129 (1975)

    Article  ADS  Google Scholar 

  24. Gadre, S.R.: Phys. Rev. A 30, 620 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  25. Ohya, M., Petz, P.: Quantum Entropy and its Use. Springer, Berlin (1993)

    Book  Google Scholar 

  26. Sokolov, V.V., Brown, B.A., Zelevinsky, V.: Phys. Rev. E 58, 56 (1998)

    Article  ADS  Google Scholar 

  27. Nagy, A., Parr, R.G.: Int. J. Quantum Chem. 58, 323 (1996)

    Article  Google Scholar 

  28. Panos, C.P., Massen, S.E.: Int. J. Mod. Phys. E 6, 497 (1997)

    Article  ADS  Google Scholar 

  29. Zelevinsky, V., Horoi, M., Brown, B.A.: Phys. Lett. B 350, 141 (1995)

    Article  ADS  Google Scholar 

  30. Zhao, Q., Zhang, L.L., Rui, Z.: Int. J. Theor. Phys. 57, 2921 (2018)

    Article  Google Scholar 

  31. Zhao, Q., Gu, Q.: Chin. Phys. B 25, 016702 (2016)

    Article  Google Scholar 

  32. Massen, S.E., Moustakidis, Ch. C., Panos, C.P.: Phys. Lett. A 299, 131–136 (2002)

    Article  ADS  Google Scholar 

  33. Sriraman, T., Chakrabarti, B., Trombettoni, A., Muruganandam, P.: . J. Chem. Phys. 147, 044304 (2017)

    Article  ADS  Google Scholar 

  34. Bao, W., Wang, H.Q., Markowich, P.A.: Comm. Math. Sci. 3, 57 (2005)

    Article  Google Scholar 

  35. Bao, W.Z., Cai, Y.Y., Wang, H.Q.: J. Comput. Phys. 229, 7874 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  36. Gadre, S.R., Bendale, R.D.: Phys. Rev. A 36, 1932 (1987)

    Article  ADS  Google Scholar 

  37. Landsberg, P.T.: Phys. Lett A 102, 171 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  38. Zhao, Q.: J. Low Temp. Phys. 182, 117 (2016)

    Article  ADS  Google Scholar 

  39. Kishor Kumar, R., Chakrabarti, B., Gammal, A.: J. Low Temp. Phys. 194, 14 (2019)

    Article  ADS  Google Scholar 

  40. Bao, W., Wang, H.Q.: J. Comput. Phys. 217, 612 (2006)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgments

Q. Z. would like to thank professor Weizhu Bao for useful discussions on the numerical calculations during the visit in Beijing Computational Science Research Center. Q. Z. is supported by the Higher Educational Science and Technology Research Project of Youth Fund of Hebei Province (Grant No. QN2019158).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Zhao.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Q., Yang, S. & Li, X. Effect of Dipolar Interaction on Information Entropy in Precession Bose-Einstein Condensates. Int J Theor Phys 59, 1876–1883 (2020). https://doi.org/10.1007/s10773-020-04455-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-020-04455-8

Keywords

Navigation