Skip to main content

Advertisement

Log in

The Effects of Intracanal Irrigants and Medicaments on Dental-Derived Stem Cells Fate in Regenerative Endodontics: An update

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Regenerative endodontics is a biologically based treatment designed for immature permanent teeth with necrotic pulp to replace dentin and root structures, as well as dental pulp cells. This procedure has become a part of novel modality in endodontics therapeutic manner, and it is considered as an alternative to apexification. In the last decade, numerous case reports, which describe this procedure, have been published. This therapeutic approach succeeded due to its lower financial cost and ease of performance. Although the clinical protocol of this procedure is not standardized and the effects of irrigants and medicaments on dental stem cells fate remain somewhat ambiguous, however when successful, it is an improvement of endodontics treatment protocols which leads to continued root development, increased dentinal wall thickness, and apical closure of immature teeth. To ensure a successful regenerative procedure, it is essential to investigate the appropriate disinfection protocols and the use of biocompatible molecules in order to control the release of growth factors and the differentiation of stem cells. This is the first review in the literature to summarize the present knowledge regarding the effect of intracanal irrigants and medicaments on the dental derived stem cells fate in regenerative endodontic procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kratunova, E., & Silva, D. (2018). Pulp therapy for primary and immature permanent teeth: an overview. General Dentistry, 66(6), 30–38.

    PubMed  Google Scholar 

  2. Rafter, M. (2005). Apexification: a review. Dental Traumatology, 21(1), 1–8.

    PubMed  Google Scholar 

  3. Lin, J. C., et al. (2016). Comparison of mineral trioxide aggregate and calcium hydroxide for apexification of immature permanent teeth: A systematic review and meta-analysis. Journal of the Formosan Medical Association, 115(7), 523–530.

    CAS  PubMed  Google Scholar 

  4. Yanpiset, K., & Trope, M. (2000). Pulp revascularization of replanted immature dog teeth after different treatment methods. Endodontics & Dental Traumatology, 16(5), 211–217.

    CAS  Google Scholar 

  5. Banchs, F., & Trope, M. (2004). Revascularization of immature permanent teeth with apical periodontitis: new treatment protocol? Journal of Endodontia, 30(4), 196–200.

    Google Scholar 

  6. Diogenes A et al (2013) An update on clinical regenerative endodontics. Endodontic Topics 28:2–23

    Google Scholar 

  7. Huang, G. T. (2008). A paradigm shift in endodontic management of immature teeth: conservation of stem cells for regeneration. Journal of Dentistry, 36(6), 379–386.

    PubMed  Google Scholar 

  8. Alasqah, M., et al. (2020). Regenerative Endodontic Management of an Immature Molar Using Calcium Hydroxide and Triple Antibiotic Paste: a Two-Year Follow-Up (p. 9025847). Case Rep Dent, 2020.

  9. Chueh, L. H., & Huang, G. T. (2006). Immature teeth with periradicular periodontitis or abscess undergoing apexogenesis: a paradigm shift. Journal of Endodontia, 32(12), 1205–1213.

    Google Scholar 

  10. Jeeruphan, T., et al. (2012). Mahidol study 1: comparison of radiographic and survival outcomes of immature teeth treated with either regenerative endodontic or apexification methods: a retrospective study. Journal of Endodontia, 38(10), 1330–1336.

    Google Scholar 

  11. Lovelace, T. W., et al. (2011). Evaluation of the delivery of mesenchymal stem cells into the root canal space of necrotic immature teeth after clinical regenerative endodontic procedure. Journal of Endodontia, 37(2), 133–138.

    Google Scholar 

  12. Wigler, R., et al. (2013). Revascularization: a treatment for permanent teeth with necrotic pulp and incomplete root development. Journal of Endodontia, 39(3), 319–326.

    Google Scholar 

  13. Lee, J. Y., et al. (2018). Regenerative Endodontic Procedures among Endodontists: A Web-based Survey. Journal of Endodontia, 44(2), 250–255.

    Google Scholar 

  14. Bezgin, T., & Sonmez, H. (2015). Review of current concepts of revascularization/revitalization. Dental Traumatology, 31(4), 267–273.

    PubMed  Google Scholar 

  15. Galler, K. M. (2016). Clinical procedures for revitalization: current knowledge and considerations. International Endodontic Journal, 49(10), 926–936.

    CAS  PubMed  Google Scholar 

  16. Murray, P. E., Garcia-Godoy, F., & Hargreaves, K. M. (2007). Regenerative endodontics: a review of current status and a call for action. Journal of Endodontia, 33(4), 377–390.

    Google Scholar 

  17. Diogenes, A. R., et al. (2014). Translational science in disinfection for regenerative endodontics. Journal of Endodontia, 40(4 Suppl), S52–S57.

    Google Scholar 

  18. Martin, D. E., et al. (2014). Concentration-dependent effect of sodium hypochlorite on stem cells of apical papilla survival and differentiation. Journal of Endodontia, 40(1), 51–55.

    Google Scholar 

  19. Har, A., & Park, J. C. (2015). Dental Stem Cells and Their Applications. The Chinese Journal of Dental Research, 18(4), 207–212.

    PubMed  Google Scholar 

  20. Marrelli, M., Paduano, F., & Tatullo, M. (2013). Cells isolated from human periapical cysts express mesenchymal stem cell-like properties. International Journal of Biological Sciences, 9(10), 1070–1078.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Haapasalo, M., et al. (2014). Irrigation in endodontics. British Dental Journal, 216(6), 299–303.

    CAS  PubMed  Google Scholar 

  22. Haapasalo, M., et al. (2010). Irrigation in endodontics. Dental Clinics of North America, 54(2), 291–312.

    PubMed  Google Scholar 

  23. Mohammadi, Z., et al. (2017). Unusual Root Canal Irrigation Solutions. The Journal of Contemporary Dental Practice, 18(5), 415–420.

    PubMed  Google Scholar 

  24. Ring, K. C., et al. (2008). The comparison of the effect of endodontic irrigation on cell adherence to root canal dentin. Journal of Endodontia, 34(12), 1474–1479.

    Google Scholar 

  25. Cameron, R., et al. (2019). Effect of a Residual Biofilm on Release of Transforming Growth Factor beta1 from Dentin. Journal of Endodontia, 45(9), 1119–1125.

    Google Scholar 

  26. Hu, X., Ling, J., & Gao, Y. (2010). Effects of irrigation solutions on dentin wettability and roughness. Journal of Endodontia, 36(6), 1064–1067.

    Google Scholar 

  27. Galler, K. M., et al. (2011). Dentin conditioning codetermines cell fate in regenerative endodontics. Journal of Endodontia, 37(11), 1536–1541.

    Google Scholar 

  28. Trevino, E. G., et al. (2011). Effect of irrigants on the survival of human stem cells of the apical papilla in a platelet-rich plasma scaffold in human root tips. Journal of Endodontia, 37(8), 1109–1115.

    Google Scholar 

  29. Pang, N. S., et al. (2014). Effect of EDTA on attachment and differentiation of dental pulp stem cells. Journal of Endodontia, 40(6), 811–817.

    Google Scholar 

  30. Park, M., Pang, N. S., & Jung, I. Y. (2015). Effect of dentin treatment on proliferation and differentiation of human dental pulp stem cells. Restorative Dentistry & Endodontics, 40(4), 290–298.

    Google Scholar 

  31. Galler, K. M., et al. (2016). EDTA conditioning of dentine promotes adhesion, migration and differentiation of dental pulp stem cells. International Endodontic Journal, 49(6), 581–590.

    CAS  PubMed  Google Scholar 

  32. Farhad Mollashahi, N., Saberi, E., & Karkehabadi, H. (2016). Evaluation of Cytotoxic Effects of Various Endodontic Irrigation Solutions on the Survival of Stem Cell of Human Apical Papilla. Iranian Endodontic Journal, 11(4), 293–297.

    PubMed  PubMed Central  Google Scholar 

  33. Zeng, Q., et al. (2016). Release of Growth Factors into Root Canal by Irrigations in Regenerative Endodontics. Journal of Endodontia, 42(12), 1760–1766.

    Google Scholar 

  34. Liu, S., et al. (2018). Evaluation of the cytotoxic effects of sodium hypochlorite on human dental stem cells. Tropical Journal of Pharmaceutical Research, 17, 2375–2380.

    CAS  Google Scholar 

  35. Hristov, K., et al. (2018). Influence of Citric Acid on the Vitality of Stem Cells from Apical Papilla. Acta Medica Bulgarica, 45, 31–35.

    Google Scholar 

  36. Chae, Y., Yang, M., & Kim, J. (2018). Release of TGF-beta1 into root canals with various final irrigants in regenerative endodontics: an in vitro analysis. International Endodontic Journal, 51(12), 1389–1397.

    CAS  PubMed  Google Scholar 

  37. Shafei, M. El, J., et al. (2018) The Effect of Morinda Citrifolia in Combination with a Chelating Agent on Isolated and Differentiated Human Dental Pulp Stem Cells Attachment to Root Canal Dentin Walls. Acta Scientific Dental Sciences. 2.

  38. Widbiller, M., Althumairy, R. I., & Diogenes, A. (2019). Direct and Indirect Effect of Chlorhexidine on Survival of Stem Cells from the Apical Papilla and Its Neutralization. Journal of Endodontia, 45(2), 156–160.

    Google Scholar 

  39. Mohammadi, Z. (2008). Sodium hypochlorite in endodontics: an update review. International Dental Journal, 58(6), 329–341.

    PubMed  Google Scholar 

  40. Gernhardt, C. R., et al. (2004). Toxicity of concentrated sodium hypochlorite used as an endodontic irrigant. International Endodontic Journal, 37(4), 272–280.

    CAS  PubMed  Google Scholar 

  41. Alkahtani, A., Alkahtany, S. M., & Anil, S. (2014). An in vitro evaluation of the cytotoxicity of varying concentrations of sodium hypochlorite on human mesenchymal stem cells. The Journal of Contemporary Dental Practice, 15(4), 473–481.

    PubMed  Google Scholar 

  42. Kontakiotis, E. G., et al. (2015). Regenerative endodontic therapy: a data analysis of clinical protocols. Journal of Endodontia, 41(2), 146–154.

    Google Scholar 

  43. Mohammadi, Z., Shalavi, S., & Jafarzadeh, H. (2013). Ethylenediaminetetraacetic acid in endodontics. European Journal of Dental, 7(Suppl 1), S135–S142.

    Google Scholar 

  44. Doumani, M., et al. (2017) A Review: The Applications of EDTA in Endodontics (Part I) (p. 83–85) 16.

  45. Geisler, T. M. (2012). Clinical considerations for regenerative endodontic procedures. Dental Clinics of North America, 56(3), 603–626.

    PubMed  Google Scholar 

  46. Arany, P. R., et al. (2014). Photoactivation of endogenous latent transforming growth factor-beta1 directs dental stem cell differentiation for regeneration. Science Translational Medicine, 6(238), 238ra69.

    PubMed  PubMed Central  Google Scholar 

  47. Roberts-Clark, D. J., & Smith, A. J. (2000). Angiogenic growth factors in human dentine matrix. Archives of Oral Biology, 45(11), 1013–1016.

    CAS  PubMed  Google Scholar 

  48. Schmalz, G., Widbiller, M., & Galler, K. M. (2017). Signaling Molecules and Pulp Regeneration. Journal of Endodontia, 43(9S), S7–S11.

    Google Scholar 

  49. Galler, K. M., et al. (2015). Influence of root canal disinfectants on growth factor release from dentin. Journal of Endodontia, 41(3), 363–368.

    Google Scholar 

  50. Liu, L., et al. (2019). EDTA Enhances Stromal Cell-derived Factor 1alpha-induced Migration of Dental Pulp Cells by Up-regulating Chemokine Receptor 4 Expression. Journal of Endodontia, 45(5), 599–605 e1.

    Google Scholar 

  51. Bracks, I. V., et al. (2019). Effect of ethylenediaminetetraacetic acid irrigation on immune-inflammatory response in teeth submitted to regenerative endodontic therapy. International Endodontic Journal, 52(10), 1457–1465.

    CAS  PubMed  Google Scholar 

  52. Basrani, B., & Lemonie, C. (2005). Chlorhexidine gluconate. Australian Endodontic Journal, 31(2), 48–52.

    PubMed  Google Scholar 

  53. Di Lenarda, R., Cadenaro, M., & Sbaizero, O. (2000). Effectiveness of 1 mol L-1 citric acid and 15% EDTA irrigation on smear layer removal. International Endodontic Journal, 33(1), 46–52.

    PubMed  Google Scholar 

  54. Yamaguchi, M., et al. (1996). Root canal irrigation with citric acid solution. Journal of Endodontia, 22(1), 27–29.

    CAS  Google Scholar 

  55. Atesci AA et al (2019) Effect of different dentin conditioning agents on growth factor release, mesenchymal stem cell attachment and morphology. Journal of Endodontia 46(2):200–208

    Google Scholar 

  56. Ivica, A., et al. (2019). Biomimetic Conditioning of Human Dentin Using Citric Acid. Journal of Endodontia, 45(1), 45–50.

    Google Scholar 

  57. Zhao, S., et al. (2000). Ultrastructural localisation of TGF-beta exposure in dentine by chemical treatment. The Histochemical Journal, 32(8), 489–494.

    CAS  PubMed  Google Scholar 

  58. Wang, Z., Shen, Y., & Haapasalo, M. (2013). Effect of smear layer against disinfection protocols on Enterococcus faecalis-infected dentin. Journal of Endodontia, 39(11), 1395–1400.

    Google Scholar 

  59. Gowda, L., & Das, U. M. (2012). Effect of various concentrations of sodium hypochlorite on primary dentin: an in vitro scanning electron microscopic study. The Journal of Clinical Pediatric Dentistry, 37(1), 37–43.

  60. Prompreecha, S., et al. (2018). Dynamic Irrigation Promotes Apical Papilla Cell Attachment in an Ex Vivo Immature Root Canal Model. Journal of Endodontia, 44(5), 744–750.

    Google Scholar 

  61. Torres, M. A. O., et al. (2017). One Plant, Many Uses: A Review of the Pharmacological Applications of Morinda citrifolia. Phytotherapy Research, 31(7), 971–979.

    PubMed  Google Scholar 

  62. Murray, P. E., et al. (2008). Evaluation of Morinda citrifolia as an endodontic irrigant. Journal of Endodontia, 34(1), 66–70.

    Google Scholar 

  63. Vishwanat, L., et al. (2017). Effect of Bacterial Biofilm on the Osteogenic Differentiation of Stem Cells of Apical Papilla. Journal of Endodontia, 43(6), 916–922.

    Google Scholar 

  64. Diogenes, A., & Hargreaves, K. M. (2017). Microbial Modulation of Stem Cells and Future Directions in Regenerative Endodontics. Journal of Endodontia, 43(9S), S95–S101.

    Google Scholar 

  65. Ruparel, N. B., et al. (2012). Direct effect of intracanal medicaments on survival of stem cells of the apical papilla. Journal of Endodontia, 38(10), 1372–1375.

    Google Scholar 

  66. Hargreaves, K. M., Diogenes, A., & Teixeira, F. B. (2014). Paradigm lost: a perspective on the design and interpretation of regenerative endodontic research. Journal of Endodontia, 40(4 Suppl), S65–S69.

    Google Scholar 

  67. Montero-Miralles, P., et al. (2018). Effectiveness and clinical implications of the use of topical antibiotics in regenerative endodontic procedures: a review. International Endodontic Journal, 51(9), 981–988.

    CAS  PubMed  Google Scholar 

  68. Kim, D., & Kim, E. (2014). Antimicrobial effect of calcium hydroxide as an intracanal medicament in root canal treatment: a literature review - Part I. In vitro studies. Restorative Dentistry and Endodontics, 39(4), 241–252.

    PubMed  Google Scholar 

  69. McIntyre, P. W., et al. (2019). The antimicrobial properties, cytotoxicity, and differentiation potential of double antibiotic intracanal medicaments loaded into hydrogel system. Clinical Oral Investigations, 23(3), 1051–1059.

  70. Pereira, T. C., et al. (2017). Intratubular disinfection with tri-antibiotic and calcium hydroxide pastes. Acta Odontologica Scandinavica, 75(2), 87–93.

  71. Chuensombat, S., et al. (2013). Cytotoxic effects and antibacterial efficacy of a 3-antibiotic combination: an in vitro study. Journal of Endodontia, 39(6), 813–819.

    Google Scholar 

  72. Althumairy, R. I., Teixeira, F. B., & Diogenes, A. (2014). Effect of dentin conditioning with intracanal medicaments on survival of stem cells of apical papilla. Journal of Endodontia, 40(4), 521–525.

    Google Scholar 

  73. Sabrah, A. H., et al. (2015). The effect of diluted triple and double antibiotic pastes on dental pulp stem cells and established Enterococcus faecalis biofilm. Clinical Oral Investigations, 19(8), 2059–2066.

  74. Kim, K. W., et al. (2015). The effects of radicular dentine treated with double antibiotic paste and ethylenediaminetetraacetic acid on the attachment and proliferation of dental pulp stem cells. Dental Traumatology, 31(5), 374–379.

  75. Chen, L., et al. (2016). Calcium Hydroxide-induced Proliferation, Migration, Osteogenic Differentiation, and Mineralization via the Mitogen-activated Protein Kinase Pathway in Human Dental Pulp Stem Cells. Journal of Endodontia, 42(9), 1355–1361.

    Google Scholar 

  76. Alghilan, M. A., et al. (2017). Attachment and proliferation of dental pulp stem cells on dentine treated with different regenerative endodontic protocols. International Endodontic Journal, 50(7), 667–675.

    CAS  PubMed  Google Scholar 

  77. Hoshino, E., et al. (1996). In-vitro antibacterial susceptibility of bacteria taken from infected root dentine to a mixture of ciprofloxacin, metronidazole and minocycline. International Endodontic Journal, 29(2), 125–130.

    CAS  PubMed  Google Scholar 

  78. Mohammadi, Z., et al. (2018). A Review on Triple Antibiotic Paste as a Suitable Material Used in Regenerative Endodontics. Iranian Endodontic Journal, 13(1), 1–6.

    PubMed  PubMed Central  Google Scholar 

  79. Conde, M. C. M., et al. (2017). A scoping review of root canal revascularization: relevant aspects for clinical success and tissue formation. International Endodontic Journal, 50(9), 860–874.

    CAS  PubMed  Google Scholar 

  80. Turk, T., Ozisik, B., & Aydin, B. (2015). Time-dependent effectiveness of the intracanal medicaments used for pulp revascularization on the dislocation resistance of MTA. BMC Oral Health, 15(1), 130.

    PubMed  PubMed Central  Google Scholar 

  81. Frough Reyhani, M., et al. (2015). Evaluation of Antimicrobial Effects of Different Concentrations of Triple Antibiotic Paste on Mature Biofilm of Enterococcus faecalis. Journal of Dental Research, Dental Clinics, Dental Prospects, 9(3), 138–143.

  82. Pankajakshan, D., et al. (2016). Triple Antibiotic Polymer Nanofibers for Intracanal Drug Delivery: Effects on Dual Species Biofilm and Cell Function. Journal of Endodontia, 42(10), 1490–1495.

    Google Scholar 

  83. Torabinejad, M., et al. (2017). Regenerative Endodontic Treatment or Mineral Trioxide Aggregate Apical Plug in Teeth with Necrotic Pulps and Open Apices: A Systematic Review and Meta-analysis. Journal of Endodontia, 43(11), 1806–1820.

    Google Scholar 

  84. Iwaya, S. I., Ikawa, M., & Kubota, M. (2001). Revascularization of an immature permanent tooth with apical periodontitis and sinus tract. Dental Traumatology, 17(4), 185–187.

  85. Jacobs, J. C., et al. (2017). Antibacterial Effects of Antimicrobials Used in Regenerative Endodontics against Biofilm Bacteria Obtained from Mature and Immature Teeth with Necrotic Pulps. Journal of Endodontia, 43(4), 575–579.

    Google Scholar 

  86. Mohammadi, Z., & Dummer, P. M. (2011). Properties and applications of calcium hydroxide in endodontics and dental traumatology. International Endodontic Journal, 44(8), 697–730.

    CAS  PubMed  Google Scholar 

  87. Carrotte, P. (2004). Endodontics: Part 9. Calcium hydroxide, root resorption, endo-perio lesions. British Dental Journal, 197(12), 735–743.

  88. Saberi, E., Farhad-Mollashahi, N., & Saberi, M. (2019). Interaction of intracanal medicaments with apical papilla stem cells: quantitative cytotoxicity assessment by methyl thiazolyl tetrazolium, trypan blue and lactate dehydrogenase. Minerva Stomatologica, 68(1), 36–41.

  89. Khoshkhounejad, M., et al. (2019). Cytotoxicity Evaluation of Minimum Antibacterial Values of Different Medicaments Used in Endodontic Regenerative Procedures. European Journal of Dental, 13(4), 514–520.

  90. Mao, J. J., et al. (2012). Regenerative endodontics: barriers and strategies for clinical translation. Dental Clinics of North America, 56(3), 639–649.

  91. Feigin, K., & Shope, B. (2017). Regenerative Endodontics. Journal of Veterinary Dentistry, 34(3), 161–178.

  92. Mitsiadis, T. A., Orsini, G., & Jimenez-Rojo, L. (2015). Stem cell-based approaches in dentistry. European Cells & Materials, 30, 248–257.

  93. Smith, A. J., et al. (2016). Exploiting the Bioactive Properties of the Dentin-Pulp Complex in Regenerative Endodontics. Journal of Endodontia, 42(1), 47–56.

    Google Scholar 

  94. Silva, T. A., Rosa, A. L., & Lara, V. S. (2004). Dentin matrix proteins and soluble factors: intrinsic regulatory signals for healing and resorption of dental and periodontal tissues? Oral Diseases, 10(2), 63–74.

  95. Mari-Beffa, M., Segura-Egea, J. J., & Diaz-Cuenca, A. (2017). Regenerative Endodontic Procedures: A Perspective from Stem Cell Niche Biology. Journal of Endodontia, 43(1), 52–62.

    Google Scholar 

  96. Smith, A. J., et al. (2012). Dentine as a bioactive extracellular matrix. Archives of Oral Biology, 57(2), 109–121.

  97. Begue-Kirn, C., et al. (1992). Effects of dentin proteins, transforming growth factor beta 1 (TGF beta 1) and bone morphogenetic protein 2 (BMP2) on the differentiation of odontoblast in vitro. The International Journal of Developmental Biology, 36(4), 491–503.

  98. Casagrande, L., et al. (2010). Dentin-derived BMP-2 and odontoblast differentiation. Journal of Dental Research, 89(6), 603–608.

  99. Nakashima, M. (1994). Induction of dentin formation on canine amputated pulp by recombinant human bone morphogenetic proteins (BMP)-2 and – 4. Journal of Dental Research, 73(9), 1515–1522.

  100. Suzuki, T., et al. (2011). Induced migration of dental pulp stem cells for in vivo pulp regeneration. Journal of Dental Research, 90(8), 1013–1018.

  101. He, H., et al. (2008). Effects of FGF2 and TGFbeta1 on the differentiation of human dental pulp stem cells in vitro. Cell Biology International, 32(7), 827–834.

  102. Feng, X., et al. (2014). Insulin-like growth factor 1 can promote proliferation and osteogenic differentiation of human dental pulp stem cells via mTOR pathway. Development, Growth & Differentiation, 56(9), 615–624.

  103. Iohara, K., et al. (2013). A novel combinatorial therapy with pulp stem cells and granulocyte colony-stimulating factor for total pulp regeneration. Stem Cells Translational Medicine, 2(7), 521–533.

  104. Iohara, K., et al. (2016). Assessment of Pulp Regeneration Induced by Stem Cell Therapy by Magnetic Resonance Imaging. Journal of Endodontia, 42(3), 397–401.

    Google Scholar 

  105. Kim, J. Y., et al. (2010). Regeneration of dental-pulp-like tissue by chemotaxis-induced cell homing. Tissue Engineering. Part A, 16(10), 3023–3031.

  106. Staffoli, S., et al. (2019) Regenerative Endodontic Procedures Using Contemporary Endodontic Materials. Materials (Basel) 12(6).

  107. Berkhoff, J. A., et al. (2014). Evaluation of triple antibiotic paste removal by different irrigation procedures. Journal of Endodontia, 40(8), 1172–1177.

    Google Scholar 

Download references

Acknowledgements

All authors are acknowledged in the authorship.

Author information

Authors and Affiliations

Authors

Contributions

Sara Ayoub and Mohammad Fayyad-Kazan had the idea for the article. All authors performed the literature search and data analysis. Sara Ayoub, Ali Cheayto, Sanaa Bassam and Mehdi Najar drafted the work. Sara Ayoub, Antoine Berbéri and Mohammad Fayyad-Kazan critically revised the work.

Corresponding author

Correspondence to Mohammad Fayyad-Kazan.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayoub, S., Cheayto, A., Bassam, S. et al. The Effects of Intracanal Irrigants and Medicaments on Dental-Derived Stem Cells Fate in Regenerative Endodontics: An update. Stem Cell Rev and Rep 16, 650–660 (2020). https://doi.org/10.1007/s12015-020-09982-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-020-09982-9

Keywords

Navigation