Skip to main content
Log in

Hierarchically nanostructured NiO-Co3O4 with rich interface defects for the electro-oxidation of 5-hydroxymethylfurfural

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Ni-based electrocatalysts with strong redox abilities are active for the electrochemical oxidation of 5-hydroxymethylfurfural (HMF). Interface engineering is an efficient way to modulate the electronic structure, tune the intermediate adsorption, and expose more active sites. Herein, we increased the concentration of interfacial sites with rich defects in a 3D hierarchical nanostructured NiO-Co3O4 electrocatalyst and investigated its catalytic performance for HMF electro-oxidation. The interface effect created abundant cation vacancies, modulated the electronic properties of Co and Ni atoms, and raised the oxidation state of Ni species. The NiO-Co3O4 catalysts show superb HMF oxidation activities with a low onset potential of 1.28 VRHE. Meanwhile, in-situ surface-selective vibrational spectroscopy of sum-frequency generation was performed to study the reaction pathway during the oxidation process on the electrocatalysts. The current study offers an efficient way to create cation vacancies and proves the decisive role of cation vacancies in catalyzing the HMF electro-oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. van Putten RJ, van der Waal JC, de Jong E, Rasrendra CB, Heeres HJ, de Vries JG. Chem Rev, 2013, 113: 1499–1597

    Article  CAS  Google Scholar 

  2. Cha HG, Choi KS. Nat Chem, 2015, 7: 328–333

    Article  CAS  Google Scholar 

  3. Bozell JJ, Petersen GR. Green Chem, 2010, 12: 539–554

    Article  CAS  Google Scholar 

  4. Chadderdon DJ, Xin L, Qi J, Qiu Y, Krishna P, More KL, Li W. Green Chem, 2014, 16: 3778–3786

    Article  CAS  Google Scholar 

  5. Barwe S, Weidner J, Cychy S, Morales DM, Dieckhöfer S, Hiltrop D, Masa J, Muhler M, Schuhmann W. Angew Chem Int Ed, 2018, 57: 11460–11464

    Article  CAS  Google Scholar 

  6. Nam DH, Taitt BJ, Choi KS. ACS Catal, 2018, 8: 1197–1206

    Article  CAS  Google Scholar 

  7. Jiang N, You B, Boonstra R, Terrero Rodriguez IM, Sun Y. ACS Energy Lett, 2016, 1: 386–390

    Article  CAS  Google Scholar 

  8. Liu WJ, Dang L, Xu Z, Yu HQ, Jin S, Huber GW. ACS Catal, 2018, 8: 5533–5541

    Article  CAS  Google Scholar 

  9. Kang MJ, Park H, Jegal J, Hwang SY, Kang YS, Cha HG. Appl Catal B-Environ, 2019, 242: 85–91

    Article  CAS  Google Scholar 

  10. Gao L, Bao Y, Gan S, Sun Z, Song Z, Han D, Li F, Niu L. ChemSusChem, 2018, 11: 2547–2553

    Article  CAS  Google Scholar 

  11. You B, Liu X, Liu X, Sun Y. ACS Catal, 2017, 7: 4564–4570

    Article  CAS  Google Scholar 

  12. You B, Jiang N, Liu X, Sun Y. Angew Chem Int Ed, 2016, 55: 9913–9917

    Article  CAS  Google Scholar 

  13. You B, Liu X, Jiang N, Sun Y. J Am Chem Soc, 2016, 138: 13639–13646

    Article  CAS  Google Scholar 

  14. Zhang N, Zou Y, Tao L, Chen W, Zhou L, Liu Z, Zhou B, Huang G, Lin H, Wang S. Angew Chem Int Ed, 2019, 58: 15895–15903

    Article  CAS  Google Scholar 

  15. Cheng F, Fan X, Chen X, Huang C, Yang Z, Chen F, Huang M, Cao S, Zhang W. Ind Eng Chem Res, 2019, 58: 16581–16587

    Article  CAS  Google Scholar 

  16. Tahir M, Pan L, Zhang R, Wang YC, Shen G, Aslam I, Qadeer MA, Mahmood N, Xu W, Wang L, Zhang X, Zou JJ. ACS Energy Lett, 2017, 2: 2177–2182

    Article  CAS  Google Scholar 

  17. Li H, Chen C, Yan D, Wang Y, Chen R, Zou Y, Wang S. J Mater Chem A, 2019, 7: 23432–23450

    Article  CAS  Google Scholar 

  18. Li X, Liu K, Wang W, Bai X. Sci China Chem, 2019, 62: 1704–1709

    Article  CAS  Google Scholar 

  19. Zhou P, He J, Zou Y, Wang Y, Xie C, Chen R, Zang S, Wang S. Sci China Chem, 2019, 62: 1365–1370

    Article  CAS  Google Scholar 

  20. Zhao B, Song J, Liu P, Xu W, Fang T, Jiao Z, Zhang H, Jiang Y. J Mater Chem, 2011, 21: 18792–18798

    Article  CAS  Google Scholar 

  21. Zou Y, Kinloch IA, Dryfe RAW. ACS Appl Mater Interfaces, 2015, 7: 22831–22838

    Article  CAS  Google Scholar 

  22. Cai Z, Bi Y, Hu E, Liu W, Dwarica N, Tian Y, Li X, Kuang Y, Li Y, Yang X-Q, Wang H, Sun X. Adv Energy Mater, 2018, 8: 1701694

    Article  Google Scholar 

  23. Zhao Y, Chang C, Teng F, Zhao Y, Chen G, Shi R, Waterhouse GIN, Huang W, Zhang T. Adv Energy Mater, 2017, 7: 1700005

    Article  Google Scholar 

  24. Lai WH, Wang YX, Wang Y, Wu M, Wang JZ, Liu HK, Chou SL, Chen J, Dou SX. Nat Chem, 2019, 11: 695–701

    Article  CAS  Google Scholar 

  25. Xu L, Jiang Q, Xiao Z, Li X, Huo J, Wang S, Dai L. Angew Chem Int Ed, 2016, 55: 5277–5281

    Article  CAS  Google Scholar 

  26. Gao W, Xia Z, Cao F, Ho JC, Jiang Z, Qu Y. Adv Funct Mater, 2018, 28: 1706056

    Article  Google Scholar 

  27. Xiao Z, Wang Y, Huang YC, Wei Z, Dong CL, Ma J, Shen S, Li Y, Wang S. Energy Environ Sci, 2017, 10: 2563–2569

    Article  CAS  Google Scholar 

  28. Liu Z, Dong CL, Huang YC, Cen J, Yang H, Chen X, Tong X, Su D, Wang Y, Wang S. J Mater Chem A, 2019, 7: 14483–14488

    Article  CAS  Google Scholar 

  29. Huang L, Chen D, Luo G, Lu YR, Chen C, Zou Y, Dong CL, Li Y, Wang S. Adv Mater, 2019, 31: 1901439

    Article  Google Scholar 

  30. Taitt BJ, Nam DH, Choi KS. ACS Catal, 2018, 9: 660–670

    Article  Google Scholar 

  31. Zhang GA, Zeng Y, Guo XP, Jiang F, Shi DY, Chen ZY. Corrosion Sci, 2012, 65: 37–47

    Article  CAS  Google Scholar 

  32. Wang HY, Hung SF, Chen HY, Chan TS, Chen HM, Liu B. J Am Chem Soc, 2016, 138: 36–39

    Article  CAS  Google Scholar 

  33. de Souza MBC, Yukuhiro VY, Vicente RA, Vilela Menegaz Teixeira Pires CTG, Bott-Neto JL, Fernández PS. ACS Catal, 2020, 10: 2131–2137

    Article  CAS  Google Scholar 

  34. Heidary N, Kornienko N. Chem Sci, 2020, 11: 1798–1806

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Universities (531118010127), the National Natural Science Foundation of China (21902047, 51402100, 21825201, 21573066, 21805080, 21972164, U19A2017), and the Provincial Natural Science Foundation of Hunan (2016TP1009).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuqin Zou or Hongzhen Lin.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Supporting Information

11426_2020_9749_MOESM1_ESM.pdf

3D Hierarchically Nanostructured NiO-Co3O4 with Rich Interface Defects for the Electro-oxidation of 5-hydroxymethylfurfural

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Y., Dong, CL., Huang, YC. et al. Hierarchically nanostructured NiO-Co3O4 with rich interface defects for the electro-oxidation of 5-hydroxymethylfurfural. Sci. China Chem. 63, 980–986 (2020). https://doi.org/10.1007/s11426-020-9749-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9749-8

Keywords

Navigation