Skip to main content
Log in

Quantum circuit design of approximate median filtering with noise tolerance threshold

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum median filtering is an important step for many quantum signal processing algorithms. Current quantum median filtering designs show limitations in either computational complexity or incomplete noise detection. We propose a design of quantum median filtering, which uses approximate median filtering with noise tolerance threshold to remove salt-and-pepper noise. Instead of calculating the median, we search an approximate median by sorting four times, which reduces the computational complexity from \(O\left( {21{q^2} + 63q} \right) \) to \(O\left( {12{q^2} + 36q} \right) \). Here, q is the qubit used to represent the gray value. Furthermore, we adopt a two-level threshold to detect the noise points as much as possible. Finally, we design a complete quantum circuit to implement the approximate median filtering. The computational complexity of our proposed circuit is \(O\left( {10{n^2} + 14{q^2}} \right) \) for a NEQR quantum image with a size of \({2^n} \times {2^n}\). The complexity analysis shows that our proposed method significantly speeds up the filtering process compared with the classical filtering methods and the existing quantum filtering methods. In addition, the simulation results prove the proposed approximate median filtering is feasible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  2. Li, H.S., Chen, X., Xia, H.Y., et al.: A quantum image representation based on bitplanes. IEEE Access 6, 62396–62404 (2018)

    Google Scholar 

  3. Vlasov, A.Y.: Quantum computations and images recognition. arxiv:quant-ph/9703010 (1997). Accessed 20 Oct 2018

  4. Beach, G., Lomont, C., Cohen, C.: Quantum image processing. In: Proceedings of the 32nd IEEE Conference Applied Imagery Pattern Recognition, Bellingham, WA, USA, 39-44 (2003)

  5. Iliyasu, A.M.: Roadmap to talking quantum movies: a contingent inquiry. IEEE Access 7(99), 23864–23913 (2019)

    Google Scholar 

  6. Venegasandraca, S.E.: Storing, processing, and retrieving an image using quantum mechanics. Proc. SPIE Int. Soc. Opt. Eng. 5105(8), 1085–1090 (2003)

    Google Scholar 

  7. Latorre, J.I.: Image compression and entanglement. arxiv:quant-ph/0510031 (2005). Accessed 18 Feb 2019

  8. Venegas-Andraca, S.E., Ball, J.L.: Processing images in entangled quantum systems. Quantum Inf. Process. 9(1), 1–11 (2010)

    MathSciNet  Google Scholar 

  9. Le, P.Q., Dong, F., Hirota, K.: A flexible representation of quantum images for polynomial preparation, image compression, and processing operations. Quantum Inf. Process. 10(1), 63–84 (2011)

    MathSciNet  MATH  Google Scholar 

  10. Yan, F., Iliyasu, A.M., Venegas-Andraca, S.E.: A survey of quantum image representations. Quantum Inf. Process. 15, 1–35 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  11. Zhang, Y., Lu, K., Gao, Y.: NEQR: a novel enhanced quantum representation of digital images. Quantum Inf. Process. 12(8), 2833–2860 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  12. Sun, B., Iliyasu, A.M., Yan, F., Dong, F., et al.: An RGB multi-channel representation for images on quantum computers. J. Adv. Comput. Intell. Intell. Info 17(3), 404–417 (2013)

    Google Scholar 

  13. Yuan, S., Mao, X., Xue, Y., et al.: SQR: a simple quantum representation of infrared images. Quantum Inf. Process. 13(6), 1353–1379 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  14. Li, H., Zhu, Q., Zhou, R., et al.: Multi-dimensional color image storage and retrieval for a normal arbitrary quantum superposition state. Quantum Inf. Process. 13(4), 991–1011 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  15. Zhang, Y., Lu, K., Gao, Y., et al.: A novel quantum representation for log-polar images. Quantum Inf. Process. 12(9), 3103–3126 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  16. Le, P.Q., Iliyasu, A.M., Dong, F., et al.: Fast geometric transformations on quantum images. IAENG Int. J. Appl. Math. 40(3), 113–123 (2010)

    MathSciNet  MATH  Google Scholar 

  17. Le, P.Q., Iliyasu, A.M., Dong, F., et al.: Strategies for designing geometric transformations on quantum images. Theor. Comput. Sci. 412(15), 1406–1418 (2011)

    MathSciNet  MATH  Google Scholar 

  18. Wang, J., Nan, Jiang, Luo, Wang: Quantum image translation. Quantum Inf. Process. 14(5), 1–16 (2014)

    MathSciNet  Google Scholar 

  19. Fan, P., Zhou, R.G., Jing, N., et al.: Geometric transformations of multidimensional color images based on NASS. Inf. Sci. 340, 191–208 (2016)

    Google Scholar 

  20. Zhou, R.G., Tan, C., Ian, H.: Global and local translation designs of quantum image based on FRQI. Int. J. Theor. Phys. 56(4), 1382–1398 (2017)

    MathSciNet  MATH  Google Scholar 

  21. Iliyasu, A.M., Le, P.Q., Dong, F., et al.: Watermarking and authentication of quantum images based on restricted geometric transformations. Inf. Sci. 186(1), 126–149 (2012)

    MathSciNet  MATH  Google Scholar 

  22. Zhang, Y., Lu, K., Xu, K., et al.: Local feature point extraction for quantum images. Quantum Inf. Process. 14(5), 1573–1588 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  23. Zhang, Y., Lu, K., Gao, Y.H.: QSobel: a novel quantum image edge extraction algorithm. Sci. China Inf. Sci. 58(1), 1–13 (2015)

    ADS  MATH  Google Scholar 

  24. Jiang, N., Yijie, Dang, Wang, J.: Quantum image matching. Quantum Inf. Process. 15(9), 3543–3572 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  25. Dang, Y., Jiang, N., Hu, H., et al.: Analysis and improvement of the quantum image matching. Quantum Inf. Process. 16(11), 269 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  26. Li, H.S., Qingxin, Z., Lan, S., et al.: Image storage, retrieval, compression and segmentation in a quantum system. Quantum Inf. Process. 12(6), 2269–2290 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  27. Caraiman, S., Manta, V.I.: Image segmentation on a quantum computer. Quantum Inf. Process. 14(5), 1693–1715 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  28. Iliyasu, A.M., Le, P.Q., Dong, F., et al.: Watermarking and authentication of quantum images based on restricted geometric transformations. Inf. Sci. 186, 126–149 (2012)

    MathSciNet  MATH  Google Scholar 

  29. Zhang, W.W., Gao, F., Liu, B., et al.: A watermark strategy for quantum images based on quantum Fourier transform. Quantum Inf. Process. 12(4), 793–803 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  30. Yang, Y.G., Jia, X., Xu, P., et al.: Analysis and improvement of the watermark strategy for quantum images based on quantum Fourier transform. Quantum Inf. Process. 12(8), 2765–2769 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  31. Song, X.H., Wang, S., Liu, S., et al.: A dynamic watermarking scheme for quantum images using quantum wavelet transform. Quantum Inf. Process. 12(12), 3689–3706 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  32. Song, X.H., Niu, X.M.: Comment on: novel image encryption/decryption based on quantum fourier transform and double phase encoding. Quantum Inf. Process. 13(6), 1301–1304 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  33. Hua, T., Chen, J., Pei, D., et al.: Quantum image encryption algorithm based on image correlation decomposition. Int. J. Theor. Phys. 54(2), 526–537 (2015)

    MATH  Google Scholar 

  34. Zhou, R.G., Wu, Q., Zhang, M.Q., et al.: Quantum image encryption and decryption algorithms based on quantum image geometric transformations. Int. J. Theor. Phys. 52, 1802–1817 (2013)

    MathSciNet  Google Scholar 

  35. Iliyasu, A.M., Le, P.Q., Dong, F., et al.: A framework for representing and producing movies on quantum computers. Int. J. Quantum Inf. 09(06), 1459–1497 (2011)

    MATH  Google Scholar 

  36. Yan, F., Iliyasu, A.M., Yang, H., et al.: Video encryption and decryption on quantum computers. Int. J. Theor. Phys. 54(8), 2893–2904 (2015)

    MathSciNet  MATH  Google Scholar 

  37. Yan, F., Iliyasu, A.M., Khan, A.R., et al.: Measurements-based moving target detection in quantum video. Int. J. Theor. Phys. 55(4), 2162–2173 (3016)

    MATH  Google Scholar 

  38. Yan, F., Le, P.Q., Iliyasu, A.M., et al.: Assessing the similarity of quantum images based on probability measurements. In: 2012 IEEE Congress on Evolutionary Computation. Brisbane, Australia (2012)

  39. Yan, F., Iliyasu, A.M., Abdullah, et al.: A parallel comparison of multiple pairs of images on quantum computers. Int. J. Innov. Comput. Appl. 5, 199–212 (2016)

    Google Scholar 

  40. Iliyasu, A.M., Yan, F., Kaoru, H.: Metric for estimating congruity between quantum images. Entropy 18(10), 360 (2016)

    ADS  Google Scholar 

  41. Liu, X.A., Zhou, R.G., El-Rafei, A.: Similarity assessment of quantum images. Quantum Inf. Process. 18(8), 244 (2019)

    ADS  Google Scholar 

  42. Zhou, R.G., Liu, X.A., Zhu, C., et al.: Similarity analysis between quantum images. Quantum Inf. Process. 17(6), 121 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  43. Lomont, C.: Quantum convolution and quantum correlation algorithms are physically impossible. arxiv:quant-ph/0309070 (2005). Accessed 20 Feb 2019

  44. Yuan, S., Lu, Y., Mao, X., Zhou, J., et al.: Quantum image filtering in the spatial domain. Int. J. Theor. Phys. 56(8), 1572–9575 (2017)

    Google Scholar 

  45. Yuan, S., Lu, Y., Mao, X., et al.: Improved quantum image filtering in the spatial domain. Int. J. Theor. Phys. 57(3), 804–813 (2018)

    MathSciNet  MATH  Google Scholar 

  46. Li, P., Liu, X., Xiao, H.: Quantum image weighted average filtering in spatial domain. Int. J. Theor. Phys. 56(11), 3690–3716 (2017)

    MATH  Google Scholar 

  47. Li, P., Liu, X., Xiao, H.: Quantum image median filtering in the spatial domain. Quantum Inf. Process. 17(3), 1573-1332 (2018)

    MathSciNet  Google Scholar 

  48. Jiang, S.X., Zhou, R.G., Hu, W.W., et al.: Improved quantum image median filtering in the spatial domain. Int. J. Theor. Phys. 58(7), 2115–2133 (2019)

    MathSciNet  MATH  Google Scholar 

  49. Fan, P., Zhou, R.G., Hu, W.W., et al.: Quantum image edge extraction based on classical Sobel operator for NEQR. Quantum Inf. Process. 18(1), 1573-1332 (2019)

    MATH  Google Scholar 

  50. Dong, W., University, H., Kaifeng, et al.: Design of quantum comparator based on extended general toffoli gates with multiple targets. Comput. Sci. 39(9), 302–306 (2012)

    Google Scholar 

  51. Barenco, A., Bennett, C.H., Cleve, R., et al.: Elementary gates for quantum computation. Phys. Rev. A 52(5), 3457–3467 (1995)

    ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grant Nos. 61762014 and 61762012 and the Science and Technology Project of Guangxi under Grant Nos. 2018JJA170083 and 2018JJA170089.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ShuXiang Song.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, H., Xiao, Y., Song, S. et al. Quantum circuit design of approximate median filtering with noise tolerance threshold. Quantum Inf Process 19, 183 (2020). https://doi.org/10.1007/s11128-020-02678-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02678-6

Keywords

Navigation