Skip to main content
Log in

Light-mediated biosynthesis of phenylpropanoid metabolites and antioxidant potential in callus cultures of purple basil (Ocimum basilicum L. var purpurascens)

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Ocimum basilicum L. var purpurascens (purple basil) contains medicinally valuable metabolites. Light greatly influences the physiological processes, including biomass accumulation and secondary metabolites production in medicinal plants. Herein, we investigated the influence of different spectral lights on the biosynthesis of phenylpropanoid metabolites in purple basil callus cultures. Growth kinetics was østudied for a total of 49 days, with 7 days of sampling time. Among the various treatments, blue light resulted in maximum biomass accumulation, total phenolic content (TPC), total flavonoid content (TFC) and antioxidant DPPH, FRAP and ABTS activities, as compared to controls. Moreover, blue light also encouraged higher superoxide dismutase activity while the red light was found effective for enhanced peroxidase activity. HPLC analysis revealed enhanced rosmarinic acid (87.62 mg/g DW) and anthocyanins (cyanidin: 0.15 mg/g DW and peonidin: 0.13 mg/g DW) contents under dark grown callus cultures which were almost 1.55, 1.25 and 1.18–fold greater than controls, respectively. Conversely, red light caused maximum production of cichoric acid (14.65 mg/g DW). Moreover, a positive correlation occurred among the accumulation of phenolic and flavonoids and antioxidant activities. These results suggest that light quality strongly influences medicinally valuable phenylpropanoid metabolites biosynthesis along with antioxidant potential in in vitro cultures of purple basil.

Key message

Light-enhanced precious metabolites in callus of Basil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ABTS:

2,2-Azinobis 3-ethylbenzthiazoline-6-sulphonic acid

FRAP:

Ferric reducing antioxidant power

DPPH:

2, 2-Diphenyl-1-picrylhydrazyl

LEDs:

Light-emitting diodes

MS:

Murashige and Skoog

DMSO:

Dimethyl sulfoxide

NAA:

α-Naphthalene acetic acid

TFC:

Total flavonoid content

TPC:

Total phenolic content

TFP:

Total flavonoid production

TPP:

Total phenolic production

FW:

Fresh weight

DW:

Dry weight

FRSA:

Free radical scavenging activity

POD:

Peroxidase

SOD:

Superoxide dismutase

TEAC:

Trolox C equivalent antioxidant capacity

RA:

Rosmarinic acid

References

  • Abbasi BH, Khan MA, Mahmood T, Ahmad M, Chaudhary MF, Khan MA (2010) Shoot regeneration and free-radical scavenging activity in Silybum marianum L. Plant Cell Tissue Organ Cult 101:371–376

    Article  CAS  Google Scholar 

  • Abbasi BH, Tian C-L, Murch SJ, Saxena PK, Liu C-Z (2007) Light-enhanced caffeic acid derivatives biosynthesis in hairy root cultures of Echinacea purpurea. Plant Cell Rep 26:1367–1372

    Article  CAS  PubMed  Google Scholar 

  • Adams S, Kunz B, Weidenborner M (1996) Mycelial deformations of Cladosporium herbarum due to the application of eugenol or carvacrol. J Essent Oil Res 8:535–540

    Article  CAS  Google Scholar 

  • Ahmad N, Fazal H, Abbasi BH, Rashid M, Mahmood T, Fatima N (2010) Efficient regeneration and antioxidant potential in regenerated tissues of Piper nigrum L. Plant Cell Tissue Organ Cult 102:129–134

    Article  CAS  Google Scholar 

  • Ahmad P, Kumar A, Gupta A, Hu X, Azooz MM, Sharma S (2012) Polyamines: role in plants under abiotic stress. Crop production for agricultural improvement. Springer, New York, pp 491–512

    Book  Google Scholar 

  • Allan AC, Hellens RP, Laing WA (2008) MYB transcription factors that colour our fruit. Trends Plant Sci 13:99–102

    Article  CAS  PubMed  Google Scholar 

  • Andi SA, Gholami M, Ford CM (2018) The effect of methyl jasmonate and light irradiation treatments on the stilbenoid biosynthetic pathway in Vitis vinifera cell suspension cultures. Nat Prod Res 32:909–917

    Article  CAS  PubMed  Google Scholar 

  • Aruoma OI (1998) Free radicals, oxidative stress and antioxidants in human health and disease. J Am Oil Chem Soc 75:199–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azad M, Kim W, Park C, Cho D (2018) Effect of artificial LED light and far infrared irradiation on phenolic compound, isoflavones and antioxidant capacity in soybean (Glycine max L.) sprout. Foods 7:174

    Article  CAS  PubMed Central  Google Scholar 

  • Benzie IF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 239:70–76

    Article  CAS  PubMed  Google Scholar 

  • Bertoli A, Lucchesini M, Mensuali-Sodi A, Leonardi M, Doveri S, Magnabosco A, Pistelli L (2013) Aroma characterisation and UV elicitation of purple basil from different plant tissue cultures. Food Chem 141:776–787

    Article  CAS  PubMed  Google Scholar 

  • Bhat S, Sharma HK (2016) Combined effect of blanching and sonication on quality parameters of bottle gourd (Lagenaria siceraria) juice. Ultra Sonochem 33:182–189

    Article  CAS  Google Scholar 

  • Bian ZH, Yang QC, Liu WK (2015) Effects of light quality on the accumulation of phytochemicals in vegetables produced in controlled environments: a review. J Sci Food Agri 95:869–877

    Article  CAS  Google Scholar 

  • Billett EE, Grayer-Barkmeijer RJ, Johnson C, Harborne J (1981) The effect of blue light on free and esterified phenolic acids in etiolated gherkin tissues. Phytochemistry 20:1259–1263

    Article  CAS  Google Scholar 

  • La Camera S, Gouzerh G, Dhondt S, Hoffmann L, Fritig B, Legrand M, Heitz T (2004) Metabolic reprogramming in plant innate immunity: the contributions of phenylpropanoid and oxylipin pathways. Immunol Rev 198:267–284

    Article  PubMed  Google Scholar 

  • Le Claire E, Schwaiger S, Banaigs B, Stuppner H, Gafner F (2005) Distribution of a new rosmarinic acid derivative in Eryngium alpinum L. and other Apiaceae. J Agric Food Chem 53:4367–4372

    Article  PubMed  CAS  Google Scholar 

  • Davis PA, Burns C (2016) Photobiology in protected horticulture. Food Energy Secur 5:223–238

    Article  Google Scholar 

  • Dougall DK, Johnson JM, Whitten GH (1980) A clonal analysis of anthocyanin accumulation by cell cultures of wild carrot. Planta 149:292–297

    Article  CAS  PubMed  Google Scholar 

  • Ellis R, Roberts E (1978) Towards a rational basis for testing seed quality. In: Proceedings-Easter School in Agricultural Science, University of Nottingham

  • Engelsma G (1969) The influence of light of different spectral regions on the synthesis of phenolic compounds in gherkin seedlings, in relation to photomorphogenesis: VI. phenol synthesis and photoperiodism. Acta Bot Neerl 18:347–352

    Article  CAS  Google Scholar 

  • Exonomou A (1987) Light treatments to improve efficiency of in vitro propagation systems. Hort Sci 22:751–754

    Google Scholar 

  • Fazal H, Abbasi BH, Ahmad N, Ali M (2016a) Elicitation of medicinally important antioxidant secondary metabolites with silver and gold nanoparticles in callus cultures of Prunella vulgaris L. Appl Biochem Biotech 180:1076–1092

    Article  CAS  Google Scholar 

  • Fazal H, Abbasi BH, Ahmad N, Ali SS, Akbar F, Kanwal F (2016) Correlation of different spectral lights with biomass accumulation and production of antioxidant secondary metabolites in callus cultures of medicinally important Prunella vulgaris L. J Photochem Photobiol B 159:1–7

    Article  CAS  PubMed  Google Scholar 

  • Felippe G (1979) Fotomorfogenese. FERRI, MG Fisiologia Vegetal. EPU, Sao Paulo

    Google Scholar 

  • Ferrandino A, Lovisolo C (2014) Abiotic stress effects on grapevine (Vitis vinifera L.). Focus on abscisic acid-mediated consequences on secondary metabolism and berry quality. Environ Exp Bot 103:138–147

    Article  CAS  Google Scholar 

  • Flanigan PM, Niemeyer ED (2014) Effect of cultivar on phenolic levels, anthocyanin composition and antioxidant properties in purple basil (Ocimum basilicum L.). Food Chem 164:518–526

    Article  CAS  PubMed  Google Scholar 

  • Gang DR, Wang J, Dudareva N, Nam KH, Simon JE, Lewinsohn E, Pichersky E (2001) An investigation of the storage and biosynthesis of phenylpropenes in sweet basil. Plant Physiol 125:539–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giannopolitis CN, Ries SK (1977) Superoxide dismutases: I. Occurrence in higher plants. Plant Physiol 59:309–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gould K (2006) Flavonoid functions in plants. In: Andersen ØM, Markham KR (eds) Flavonoids: chemistry biochemistry and applications. CRC Press, Boca Raton, pp 397–441

    Google Scholar 

  • Gupta SD, Jatothu B (2013) Fundamentals and applications of light-emitting diodes (LEDs) in in vitro plant growth and morphogenesis. Plant Biotechnol Rep 7:211–220

    Article  Google Scholar 

  • Hakkim FL, Arivazhagan G, Boopathy R (2013) Antioxidant property of selected Ocimum species and their secondary metabolite content. J Med Plants Res 2:250–257

    Google Scholar 

  • Heo J-W, Kang D-H, Bang H-S, Hong S-G, Chun C-H, Kang K-K (2012) Early growth, pigmentation, protein content, and phenylalanine ammonia-lyase activity of red curled lettuces grown under different lighting conditions. Korean J Hortic Sci Technol 30:6–12

    Article  CAS  Google Scholar 

  • Hiraoka N, Kodama T, Tomita Y (1986) Selection of Bupleurum falcatum callus line producing anthocyanins in darkness. J Nat Prod 49:470–474

    Article  CAS  Google Scholar 

  • Iriti M, Faoro F (2009) Bioactivity of grape chemicals for human health. Nat Prod Commun 4:1934578 × 0900400502

    Google Scholar 

  • Iwai M, Ohta M, Tsuchiya H, Suzuki T (2010) Enhanced accumulation of caffeic acid, rosmarinic acid and luteolin-glucoside in red perilla cultivated under red diode laser and blue LED illumination followed by UV-A irradiation. J Funct Foods 2:66–70

    Article  CAS  Google Scholar 

  • Jao R-C, Fang W (2004) Effects of frequency and duty ratio on the growth of potato plantlets in vitro using light-emitting diodes. HortScience 39:375–379

    Article  Google Scholar 

  • Jao R-C, Lai C-C, Fang W, Chang S-F (2005) Effects of red light on the growth of Zantedeschia plantlets in vitro and tuber formation using light-emitting diodes. HortScience 40:436–438

    Article  Google Scholar 

  • Javanmardi J, Khalighi A, Kashi A, Bais H, Vivanco J (2002) Chemical characterization of basil (Ocimum basilicum L.) found in local accessions and used in traditional medicines in Iran. J Agric Food Chem 50:5878–5883

    Article  CAS  PubMed  Google Scholar 

  • Karwasara VS, Dixit VK (2013) Culture medium optimization for camptothecin production in cell suspension cultures of Nothapodytes nimmoniana (J. Grah.) Mabberley. Plant Biotechnol Rep 7:357–369

    Article  Google Scholar 

  • Khan M, Khan R, Ahmed M, Muhammad N, Khan M, Khan H, Atlas N, Khan F (2013) Biological screening of methanolic crude extracts of Caralluma tuberculata. Int J Indig Med Plants 46:2051–4263

    Google Scholar 

  • Khan T, Ullah MA, Garros L, Hano C, Abbasi BH (2018) Synergistic effects of melatonin and distinct spectral lights for enhanced production of anti-cancerous compounds in callus cultures of Fagonia indica. J Photochem Photobiol B 190:163–171

    Article  PubMed  CAS  Google Scholar 

  • Kiferle C, Lucchesini M, Mensuali-Sodi A, Maggini R, Raffaelli A, Pardossi A (2011) Rosmarinic acid content in basil plants grown in vitro and in hydroponics. Cent Eur J Biol 6:946–957

    CAS  Google Scholar 

  • Kim S-J, Hahn E-J, Heo J-W, Paek K-Y (2004) Effects of LEDs on net photosynthetic rate, growth and leaf stomata of chrysanthemum plantlets in vitro. Sci Hortic 101:143–151

    Article  Google Scholar 

  • Kim E-Y, Park S-A, Park B-J, Lee Y, Oh M-M (2014) Growth and antioxidant phenolic compounds in cherry tomato seedlings grown under monochromatic light-emitting diodes. Hortic Environ Biotechnol 55:506–513

    Article  CAS  Google Scholar 

  • Lagrimini L (1980) Plant peroxidases: under-and over-expression in transgenic plants and physiological consequences. Plant Peroxidases 1990:59–69

    Google Scholar 

  • Lee P-L, Chen J-T (2014) Plant regeneration via callus culture and subsequent in vitro flowering of Dendrobium huoshanense. Acta Physiol Plant 36:2619–2625

    Article  CAS  Google Scholar 

  • Lee J, Scagel CF (2009) Chicoric acid found in basil (Ocimum basilicum L.) leaves. Food Chem 115:650–656

    Article  CAS  Google Scholar 

  • Lee S-W, Seo JM, Lee M-K, Chun J-H, Antonisamy P, Arasu MV, Suzuki T, Al-Dhabi NA, Kim S-J (2014) Influence of different LED lamps on the production of phenolic compounds in common and Tartary buckwheat sprouts. Ind Crops Prod 54:320–326

    Article  CAS  Google Scholar 

  • Lee CW, Shuler ML (2000) The effect of inoculum density and conditioned medium on the production of ajmalicine and catharanthine from immobilized Catharanthus roseus cells. Biotechnol Bioeng 67:61–71

    Article  CAS  PubMed  Google Scholar 

  • Lee MRF, Tweed JKS, Minchin FR, Winters (2009) Red clover polyphenol oxidase: activation, activity and efficacy under grazing. Anim Feed Sci Technol 149:250–264

    Article  CAS  Google Scholar 

  • Li H-B, Wong C-C, Cheng K-W, Chen F (2008) Antioxidant properties in vitro and total phenolic contents in methanol extracts from medicinal plants. LWT-Food Sci Technol 41:385–390

    Article  CAS  Google Scholar 

  • Liu Y, Fang S, Yang W, Shang X, Fu X (2018) Light quality affects flavonoid production and related gene expression in Cyclocarya paliurus. J Photochem Photobiol B 179:66–73

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Qi J-L, Chen L, Zhang M-S, Wang X-Q, Pang Y-J, Yang Y-H (2006) Effect of light on gene expression and shikonin formation in cultured Onosma paniculatum cells. Plant Cell Tissue Org Cult 84:38

    Article  CAS  Google Scholar 

  • Liu B, Zhang Y, Zhang K, Fang H, Zhang X, Fu R, Qiu X, Xu R (2016) The efficient tissue culture system of Orostachys fimbriata. Agric Sci 7:175

    CAS  Google Scholar 

  • Lobiuc A, Vasilache V, Oroian M, Stoleru T, Burducea M, Pintilie O, Zamfirache M-M (2017) Blue and red LED illumination improves growth and bioactive compounds contents in acyanic and cyanic Ocimum basilicum L. Microgreens. Molecules 22:2111

    Article  PubMed Central  CAS  Google Scholar 

  • Mastaneh M, Ahamd M, Taher N, Mehrdad H (2014) Antioxidant effect of Purple basil (Lamiaceae) Phenolics. Orient J Chem 30:1965–1969

    Article  CAS  Google Scholar 

  • Matsubara K, Kitani S, Yoshioka T, Morimoto T, Fujita Y, Yamada Y (1989) High density culture of Coptis japonica cells increases berberine production. J ChemTechnol Biotechnol 46:61–69

    Article  CAS  Google Scholar 

  • Mir MY, Kamili AN, Hassan QP, Tyub S (2017) Effect of Light and Dark Conditions on Biomass Accumulation and Secondary Metabolite Production in Suspension Cultures of Artemisia amygdalina Decne. J Himalaya Ecol Sustain Dev 12:1–6

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nadeem M, Abbasi BH, Younas M, Ahmad W, Zahir A, Hano C (2018) LED-enhanced biosynthesis of biologically active ingredients in callus cultures of Ocimum basilicum. J Photochem Photobiol B 190:172–178

    Article  PubMed  CAS  Google Scholar 

  • Nagella P, Murthy HN (2011) Effects of macroelements and nitrogen source on biomass accumulation and withanolide-A production from cell suspension cultures of Withania somnifera (L.) Dunal. Plant Cell Tissue Org Cult 104:119–124

    Article  CAS  Google Scholar 

  • Nakamura M, Takeuchi Y, Miyanaga K, Seki M, Furusaki S (1999) High anthocyanin accumulation in the dark by strawberry (Fragaria ananassa) callus. Biotechnol Lett 21:695–699

    Article  CAS  Google Scholar 

  • Nam TG, Kim D-O, Eom SH (2018) Effects of light sources on major flavonoids and antioxidant activity in common buckwheat sprouts. Food Sci Biotechnol 27:169–176

    Article  CAS  PubMed  Google Scholar 

  • Nayyar H, Gupta D (2006) Differential sensitivity of C3 and C4 plants to water deficit stress: association with oxidative stress and antioxidants. Environ Exp Bot 58:106–113

    Article  CAS  Google Scholar 

  • Nazir M, Tungmunnithum D, Bose S, Drouet S, Garros L, Giglioli-Guivarc’h N, Abbasi BH, Hano C (2019) Differential production of phenylpropanoid metabolites in callus cultures of Ocimum basilicum L. with distinct in vitro antioxidant activities and in vivo protective effects against UV stress. J Agric Food Chem 67:1847–1859

    Article  CAS  PubMed  Google Scholar 

  • Nhut DT, Hong L, Watanabe H, Goi M, Tanaka M (2000) Growth of banana plantlets cultured in vitro under red and blue light-emitting diode (LED) irradiation source. In: International Symposium on Tropical and Subtropical Fruits, vol 575, pp 117–124

  • Okamoto K, Yanagi T, Takita S, Tanaka M, Higuchi T, Ushida Y, Watanabe H (1996) Development of plant growth apparatus using blue and red LED as artificial light source. In: International Symposium on Plant Production in Closed Ecosystems, vol 440, pp 111–116

  • OuYang F, Mao J-F, Wang J, Zhang S, Li Y (2015) Transcriptome analysis reveals that red and blue light regulate growth and phytohormone metabolism in Norway spruce [Picea abies (L.) Karst.]. PLoS ONE 10:e0127896

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Park SU, Uddin R, Xu H, Kim YK, Lee SY (2008) Biotechnological applications for rosmarinic acid production in plant. Afr J Biotechnol 7(25):4959–4965

    CAS  Google Scholar 

  • Pereira DM, Valentão P, Pereira JA, Andrade PB (2009) Phenolics: from chemistry to biology. MDPI 2202–2211

  • Petersen M, Abdullah Y, Benner J, Eberle D, Gehlen K, Hücherig S, Janiak V, Kim KH, Sander M, Weitzel C (2009) Evolution of rosmarinic acid biosynthesis. Phytochemistry 70:1663–1679

    Article  CAS  PubMed  Google Scholar 

  • Petersen M, Simmonds MS (2003) Rosmarinic acid. Phytochemistry 62:121–125

    Article  CAS  PubMed  Google Scholar 

  • Petersen M (2003) Simmonds. Rosmarinic acid 2:121–125

  • Phippen WB, Simon JE (1998) Anthocyanins in basil (Ocimum basilicum L.). J Agric Food Chem 46:1734–1738

    Article  CAS  Google Scholar 

  • Prior RL, Wu X, Schaich K (2005) Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J Agric Food Chem 53:4290–4302

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto K, Iida K, Sawamura K, Hajiro K, Asada Y, Yoshikawa T, Furuya T (1993) Effects of nutrients on anthocyanin production in cultured cells of Aralia cordata. Phytochemistry 33:357–360

    Article  CAS  Google Scholar 

  • Senger H (1987) Blue light responses: phenomena and occurrence in plants and microorganisms

  • Shan B, Cai YZ, Sun M, Corke H (2005) Antioxidant capacity of 26 spice extracts and characterization of their phenolic constituents. J Agric Food Chem 53:7749–7759

    Article  CAS  PubMed  Google Scholar 

  • Shiga T, Shoji K, Shimada H, Hashida S-n, Goto F, Yoshihara T (2009) Effect of light quality on rosmarinic acid content and antioxidant activity of sweet basil, Ocimum basilicum L. Plant Biotechnol 26:255–259

    Article  CAS  Google Scholar 

  • Shohael A, Ali M, Yu K, Hahn E, Islam R, Paek K (2006) Effect of light on oxidative stress, secondary metabolites and induction of antioxidant enzymes in Eleutherococcus senticosus somatic embryos in bioreactor. Process Biochem 41:1179–1185

    Article  CAS  Google Scholar 

  • Shoji K, Goto E, Hashida S, Goto F, Yoshihara T (2009) Effect of light quality on the polyphenol content and antioxidant activity of sweet basil (Ocimum basilicum L.). In: VI International Symposium on Light in Horticulture, vol 907, pp 95–99

  • Siddhuraju P, Mohan P, Becker K (2002) Studies on the antioxidant activity of Indian Laburnum (Cassia fistula L.): a preliminary assessment of crude extracts from stem bark, leaves, flowers and fruit pulp. Food Chem 79:61–67

    Article  CAS  Google Scholar 

  • Son K-H, Park J-H, Kim D, Oh M-M (2012) Leaf shape index, growth, and phytochemicals in two leaf lettuce cultivars grown under monochromatic light-emitting diodes. Korean J Hortic Sci 30:664–672

    CAS  Google Scholar 

  • Stefano M, Rosario M (2003) Effects of light quality on micropropagation of woody species Micropropagation of woody trees and fruits. Springer, Berlin, pp 3–35

    Book  Google Scholar 

  • Sulaiman C, Balachandran I (2012) Total phenolics and total flavonoids in selected Indian medicinal plants. Indian J Pharm Sci 74:258

  • Takemiya A, Inoue S-i, Doi M, Kinoshita T, Shimazaki K-i (2005) Phototropins promote plant growth in response to blue light in low light environments. Plant Cell 17:1120–1127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tariq U, Ali M, Abbasi BH (2014) Morphogenic and biochemical variations under different spectral lights in callus cultures of Artemisia absinthium L. J Photochem Photobio B 130:264–271

    Article  CAS  Google Scholar 

  • Trejo-Espino JL, Rodriguez-Monroy M, Vernon-Carter E, Cruz-Sosa F (2011) Establishment and characterization of Prosopis laevigata (Humb. & Bonpl. ex Willd) MC Johnst. cell suspension culture: a biotechnology approach for mesquite gum production. Acta Physiol Plant 33:1687–1695

    Article  CAS  Google Scholar 

  • Vani SR, Cheng S, Chuah C (2009) Comparative study of volatile compounds from genus Ocimum. Am J Appl Sci 6:523

    Article  CAS  Google Scholar 

  • Velioglu Y, Mazza G, Gao L, Oomah B (1998) Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. J Agric Food Chem 46:4113–4117

    Article  CAS  Google Scholar 

  • Wade HK, Bibikova TN, Valentine WJ, Jenkins GI (2001) Interactions within a network of phytochrome, cryptochrome and UV-B phototransduction pathways regulate chalcone synthase gene expression in Arabidopsis leaf tissue. Plant J 25:675–685

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Jiang YP, Yu HJ, Xia XJ, Shi K, Zhou YH, Yu JQ (2010) Light quality affects incidence of powdery mildew, expression of defence-related genes and associated metabolism in cucumber plants. Eur J Plant Pathol 127:125–135

    Article  CAS  Google Scholar 

  • Wang H, Provan GJ, Helliwell K (2004) Determination of rosmarinic acid and caffeic acid in aromatic herbs by HPLC. Food Chem 87:307–311

    Article  CAS  Google Scholar 

  • Wu M-C, Hou C-Y, Jiang C-M, Wang Y-T, Wang C-Y, Chen H-H, Chang H-M (2007) A novel approach of LED light radiation improves the antioxidant activity of pea seedlings. Food Chem 101:1753–1758

    Article  CAS  Google Scholar 

  • Yam F, Hassan Z (2005) Innovative advances in LED technology. Microelectron J 36:129–137

    Article  CAS  Google Scholar 

  • Yamakawa T, Kato S, Ishida K, Kodama T, >Minoda Y (1983) Production of anthocyanins by Vitis cells in suspension culture. Agric Biol Chem 47:2185–2191

    CAS  Google Scholar 

  • Yanagi T, Okamoto K (1994) Utilization of super-bright light emitting diodes as an artificial light source for plant growth. In: III International Symposium on Artificial Lighting in Horticulture, vol 418, pp 223–228

  • Yeh N, Chung J-P (2009) High-brightness LEDs—Energy efficient lighting sources and their potential in indoor plant cultivation. Renew Sust Energy Rev 13:2175–2180

    Article  CAS  Google Scholar 

  • Yonghua Q, Shanglong Z, Asghar S, Lingxiao Z, Qiaoping Q, Kunsong C, Changjie X (2005) Regeneration mechanism of Toyonoka strawberry under different color plastic films. Plant Sci 168:1425–1431

    Article  CAS  Google Scholar 

  • Younas M, Drouet S, Nadeem M, Giglioli-Guivarc’h N, Hano C, Abbasi BH (2018) Differential accumulation of silymarin induced by exposure of Silybum marianum L. callus cultures to several spectres of monochromatic lights. J Photochem Photobiol B 184:61–70

    Article  CAS  PubMed  Google Scholar 

  • Zahir A, Abbasi BH, Adil M, Anjum S, Zia M (2014) Synergistic effects of drought stress and photoperiods on phenology and secondary metabolism of Silybum marianum. Appl Biochem Biotechnol 174:693–707

    Article  CAS  PubMed  Google Scholar 

  • Zheng W, Wang SY (2001) Antioxidant activity and phenolic compounds in selected herbs. J Agric Food Chem 49:5165–5170

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Dr. Bilal Haider Abbasi acknowledges research fellowship of Le Studium Institute for Advanced Studies, Loire Valley, Orléans, France.

Author information

Authors and Affiliations

Authors

Contributions

MN performed the experiments, analysed and compiled data and prepared the manuscript. MA and MY assisted in sub-culturing and write-up. AS and MS helped in phytochemical analysis. CH and NG performed HPLC and antioxidant assays. BHA apprehended the idea, provided platform to complete this research, supervised the research, and reviewed the paper critically.

Corresponding author

Correspondence to Bilal Haider Abbasi.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Sergio J. Ochatt

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazir, M., Ullah, M.A., Younas, M. et al. Light-mediated biosynthesis of phenylpropanoid metabolites and antioxidant potential in callus cultures of purple basil (Ocimum basilicum L. var purpurascens). Plant Cell Tiss Organ Cult 142, 107–120 (2020). https://doi.org/10.1007/s11240-020-01844-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-020-01844-z

Keywords

Navigation