Skip to main content

Advertisement

Log in

A Multi-Ligand Imaging Study Exploring GABAergic Receptor Expression and Inflammation in Multiple Sclerosis

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

The γ-aminobutyric acid (GABA) is the main inhibitory neurotransmitter and essential for normal brain function. The GABAergic system has been shown to have immunomodulatory effects and respond adaptively to excitatory toxicity. The association of the GABAergic system and inflammation in patients with multiple sclerosis (MS) remains unknown. In this pilot study, the in vivo relationship between GABAA binding and the innate immune response is explored using positron emission tomography (PET) with [11C] flumazenil (FMZ) and [11C]-PK11195 PET (PK-PET), a measure of activated microglia/macrophages.

Procedures

Sixteen MS patients had dynamic FMZ-PET and PK-PET imaging. Ten age-matched healthy controls (HC) had a single FMZ-PET. GABAA receptor binding was calculated using Logan reference model with the pons as reference. Distribution of volume ratio (VTr) for PK-PET was calculated using image-derived input function. A hierarchical linear model was fitted to assess the linear association between PK-PET and FMZ-PET among six cortical regions of interest.

Results

GABAA receptor binding was higher throughout the cortex in MS patients (5.72 ± 0.91) as compared with HC (4.70 ± 0.41) (p = 0.002). A significant correlation was found between FMZ binding and PK-PET within the cortex (r = 0.61, p < 0.001) and among the occipital (r = 0.61, p = 0.012), parietal (r = 0.49, p = 0.041), and cingulate (r = 0.32, p = 0.006) regions.

Conclusions

A higher GABAA receptor density in MS subjects compared with HC was observed and correlated with innate immune activity. Our observations demonstrate that immune-driven GABAergic abnormalities may be present in MS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Araujo SES, Mendonca HR, Wheeler NA et al (2017) Inflammatory demyelination alters subcortical visual circuits. J Neuroinflammation 14:162

    PubMed  PubMed Central  Google Scholar 

  2. Cawley N, Solanky BS, Muhlert N, Tur C, Edden RAE, Wheeler-Kingshott CAM, Miller DH, Thompson AJ, Ciccarelli O (2015) Reduced gamma-aminobutyric acid concentration is associated with physical disability in progressive multiple sclerosis. Brain 138:2584–2595

    PubMed  PubMed Central  Google Scholar 

  3. Nantes JC, Proulx S, Zhong J, Holmes SA, Narayanan S, Brown RA, Hoge RD, Koski L (2017) GABA and glutamate levels correlate with MTR and clinical disability: insights from multiple sclerosis. NeuroImage 157:705–715

    CAS  PubMed  Google Scholar 

  4. Freeman L, Garcia-Lorenzo D, Bottin L, Leroy C, Louapre C, Bodini B, Papeix C, Assouad R, Granger B, Tourbah A, Dollé F, Lubetzki C, Bottlaender M, Stankoff B (2015) The neuronal component of gray matter damage in multiple sclerosis: a [(11) C]flumazenil positron emission tomography study. Ann Neurol 78:554–567

    CAS  PubMed  Google Scholar 

  5. Wang DS, Zurek AA, Lecker I, Yu J, Abramian AM, Avramescu S, Davies PA, Moss SJ, Lu WY, Orser BA (2012) Memory deficits induced by inflammation are regulated by alpha5-subunit-containing GABAA receptors. Cell Rep 2:488–496

    PubMed  PubMed Central  Google Scholar 

  6. Serantes R, Arnalich F, Figueroa M, Salinas M, Andrés-Mateos E, Codoceo R, Renart J, Matute C, Cavada C, Cuadrado A, Montiel C (2006) Interleukin-1beta enhances GABAA receptor cell-surface expression by a phosphatidylinositol 3-kinase/Akt pathway: relevance to sepsis-associated encephalopathy. J Biol Chem 281:14632–14643

    CAS  PubMed  Google Scholar 

  7. Bibolini MJ, Chanaday NL, Baez NS, Degano AL, Monferran CG, Roth GA (2011) Inhibitory role of diazepam on autoimmune inflammation in rats with experimental autoimmune encephalomyelitis. Neuroscience 199:421–428

    CAS  PubMed  Google Scholar 

  8. Lee M, Schwab C, McGeer PL (2011) Astrocytes are GABAergic cells that modulate microglial activity. Glia 59:152–165

    PubMed  Google Scholar 

  9. Bhat R, Axtell R, Mitra A, Miranda M, Lock C, Tsien RW, Steinman L (2010) Inhibitory role for GABA in autoimmune inflammation. Proc Natl Acad Sci U S A 107:2580–2585

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Odano I, Halldin C, Karlsson P, Varrone A, Airaksinen AJ, Krasikova RN, Farde L (2009) [18F]flumazenil binding to central benzodiazepine receptor studies by PET-quantitative analysis and comparisons with [11C]flumazenil. NeuroImage 45:891–902

    PubMed  Google Scholar 

  11. Maziere M, Hantraye P, Prenant C, Sastre J, Comar D (1984) Synthesis of ethyl 8-fluoro-5,6-dihydro-5-[11C]methyl-6-oxo-4H-imidazo [1,5-a] [1,4]benzodiazepine-3-carboxylate (RO 15.1788-11C): a specific radioligand for the in vivo study of central benzodiazepine receptors by positron emission tomography. Int J Appl Radiat Isot 35:973–976

    CAS  PubMed  Google Scholar 

  12. Heiss WD, Sobesky J, Smekal U et al (2004) Probability of cortical infarction predicted by flumazenil binding and diffusion-weighted imaging signal intensity: a comparative positron emission tomography/magnetic resonance imaging study in early ischemic stroke. Stroke 35:1892–1898

    PubMed  Google Scholar 

  13. Lamusuo S, Pitkanen A, Jutila L, Ylinen A, Partanen K, Kalviainen R, Ruottinen HM, Oikonen V, Nagren K, Lehikoinen P, Vapalahti M, Vainio P, Rinne JO (2000) [11 C]Flumazenil binding in the medial temporal lobe in patients with temporal lobe epilepsy: correlation with hippocampal MR volumetry, T2 relaxometry, and neuropathology. Neurology 54:2252–2260

    CAS  PubMed  Google Scholar 

  14. Geeraerts T, Coles JP, Aigbirhio FI, Pickard JD, Menon DK, Fryer TD, Hong YT (2011) Validation of reference tissue modelling for [11C]flumazenil positron emission tomography following head injury. Ann Nucl Med 25:396–405

    PubMed  Google Scholar 

  15. Gandhi R, Laroni A, Weiner HL (2010) Role of the innate immune system in the pathogenesis of multiple sclerosis. J Neuroimmunol 221:7–14

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Banati RB, Newcombe J, Gunn RN, Cagnin A, Turkheimer F, Heppner F, Price G, Wegner F, Giovannoni G, Miller DH, Perkin GD, Smith T, Hewson AK, Bydder G, Kreutzberg GW, Jones T, Cuzner ML, Myers R (2000) The peripheral benzodiazepine binding site in the brain in multiple sclerosis: quantitative in vivo imaging of microglia as a measure of disease activity. Brain 123(Pt 11):2321–2337

    PubMed  Google Scholar 

  17. Politis M, Giannetti P, Su P, Turkheimer F, Keihaninejad S, Wu K, Waldman A, Malik O, Matthews PM, Reynolds R, Nicholas R, Piccini P (2012) Increased PK11195 PET binding in the cortex of patients with MS correlates with disability. Neurology 79:523–530

    PubMed  PubMed Central  Google Scholar 

  18. Rissanen E, Tuisku J, Rokka J, Paavilainen T, Parkkola R, Rinne JO, Airas L (2014) In vivo detection of diffuse inflammation in secondary progressive multiple sclerosis using PET imaging and the radioligand (1)(1)C-PK11195. Eur J Nucl Med 55:939–944

    CAS  Google Scholar 

  19. Dale AM, Fischl B, Sereno MI (1999) Cortical surface-based analysis. I. Segmentation and surface reconstruction. NeuroImage 9:179–194

    CAS  PubMed  Google Scholar 

  20. Kang Y, Schlyer D, Kaunzner UW, Kuceyeski A, Kothari PJ, Gauthier SA (2018) Comparison of two different methods of image analysis for the assessment of microglial activation in patients with multiple sclerosis using (R)-[N-methyl-carbon-11] PK11195. PLoS One 13:e0201289

    PubMed  PubMed Central  Google Scholar 

  21. Mikolajczyk K, Szabatin M, Rudnicki P, Grodzki M, Burger C (1998) A JAVA environment for medical image data analysis: initial application for brain PET quantitation. Med Inf 23:207–214

    CAS  Google Scholar 

  22. Hashimoto K, Inoue O, Suzuki K, Yamasaki T, Kojima M (1989) Synthesis and evaluation of 11C-PK 11195 for in vivo study of peripheral-type benzodiazepine receptors using positron emission tomography. Ann Nucl Med 3:63–71

    CAS  PubMed  Google Scholar 

  23. Kang Y, Mozley PD, Verma A, Schlyer D, Henchcliffe C, Gauthier SA, Chiao PC, He B, Nikolopoulou A, Logan J, Sullivan JM, Pryor KO, Hesterman J, Kothari PJ, Vallabhajosula S (2018) Noninvasive PK11195-PET image analysis techniques can detect abnormal cerebral microglial activation in Parkinson’s disease. J Neuroimaging 28:496–505

    PubMed  PubMed Central  Google Scholar 

  24. Logan J, Fowler JS, Volkow ND, Wang GJ, Ding YS, Alexoff DL (1996) Distribution volume ratios without blood sampling from graphical analysis of PET data. J Cereb Blood Flow Metab 16:834–840

    CAS  PubMed  Google Scholar 

  25. Logan J (2000) Graphical analysis of PET data applied to reversible and irreversible tracers. Nucl Med Biol 27:661–670

    CAS  PubMed  Google Scholar 

  26. Kaunzner UW, Kang Y, Zhang S, Morris E, Yao Y, Pandya S, Hurtado Rua SM, Park C, Gillen KM, Nguyen TD, Wang Y, Pitt D, Gauthier SA (2019) Quantitative susceptibility mapping identifies inflammation in a subset of chronic multiple sclerosis lesions. Brain 142:133–145

    PubMed  Google Scholar 

  27. Team RC R: A language and environment for statistical computing. URL http://www.R-project.org/

  28. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate-a practical and powerful approach to multiple testing. J Roy Stat Soc B Met 57:289–300

    Google Scholar 

  29. LoCastro E, Kuceyeski A, Raj A (2014) Brainography: an atlas-independent surface and network rendering tool for neural connectivity visualization. Neuriinformatics 12:355–359

    CAS  Google Scholar 

  30. Fritschy JM, Panzanelli P (2014) GABAA receptors and plasticity of inhibitory neurotransmission in the central nervous system. Eur J Neurosci 39:1845–1865

    PubMed  Google Scholar 

  31. Li Y, Sun H, Chen Z, Xu H, Bu G, Zheng H (2016) Implications of GABAergic neurotransmission in Alzheimer’s disease. Front Aging Neurosci 8:31

    PubMed  PubMed Central  Google Scholar 

  32. Dutta R, McDonough J, Yin X, Peterson J, Chang A, Torres T, Gudz T, Macklin WB, Lewis DA, Fox RJ, Rudick R, Mirnics K, Trapp BD (2006) Mitochondrial dysfunction as a cause of axonal degeneration in multiple sclerosis patients. Ann Neurol 59:478–489

    CAS  PubMed  Google Scholar 

  33. Accardi MV, Daniels BA, Brown PM, Fritschy JM, Tyagarajan SK, Bowie D (2014) Mitochondrial reactive oxygen species regulate the strength of inhibitory GABA-mediated synaptic transmission. Nat Commun 5:3168

    PubMed  PubMed Central  Google Scholar 

  34. Kiljan S, Prins M, Baselmans BM, Bol J, Schenk GJ, van Dam AM (2019) Enhanced GABAergic immunoreactivity in hippocampal neurons and astroglia of multiple sclerosis patients. J Neuropathol Exp Neurol 78:480–491

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Sarchielli P, Greco L, Floridi A, Floridi A, Gallai V (2003) Excitatory amino acids and multiple sclerosis: evidence from cerebrospinal fluid. Arch Neurol 60:1082–1088

    PubMed  Google Scholar 

  36. Newcombe J, Uddin A, Dove R, Patel B, Turski L, Nishizawa Y, Smith T (2008) Glutamate receptor expression in multiple sclerosis lesions. Brain Pathol 18:52–61

    PubMed  Google Scholar 

  37. Azevedo CJ, Kornak J, Chu P, Sampat M, Okuda DT, Cree BA, Nelson SJ, Hauser SL, Pelletier D (2014) In vivo evidence of glutamate toxicity in multiple sclerosis. Ann Neurol 76:269–278

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Vercellino M, Merola A, Piacentino C, Votta B, Capello E, Mancardi GL, Mutani R, Giordana MT, Cavalla P (2007) Altered glutamate reuptake in relapsing-remitting and secondary progressive multiple sclerosis cortex: correlation with microglia infiltration, demyelination, and neuronal and synaptic damage. J Neuropathol Exp Neurol 66:732–739

    CAS  PubMed  Google Scholar 

  39. Andersson JD, Matuskey D, Finnema SJ (2018) Positron emission tomography imaging of the gamma-aminobutyric acid system. Neurosci Lett

  40. Frankle WG, Cho RY, Narendran R, Mason NS, Vora S, Litschge M, Price JC, Lewis DA, Mathis CA (2009) Tiagabine increases [11C]flumazenil binding in cortical brain regions in healthy control subjects. Neuropsychopharmacology 34:624–633

    CAS  PubMed  Google Scholar 

  41. Cosenza-Nashat M, Zhao ML, Suh HS, Morgan J, Natividad R, Morgello S, Lee SC (2009) Expression of the translocator protein of 18 kDa by microglia, macrophages and astrocytes based on immunohistochemical localization in abnormal human brain. Neuropathol Appl Neurobiol 35:306–328

    CAS  PubMed  Google Scholar 

  42. Zurawski J, Tauhid S, Chu R, Khalid F, Healy BC, Weiner HL, Bakshi R (2020) 7T MRI cerebral leptomeningeal enhancement is common in relapsing-remitting multiple sclerosis and is associated with cortical and thalamic lesions. Mult Scler 26:177–187

    PubMed  Google Scholar 

  43. Mandolesi G, Gentile A, Musella A, Fresegna D, de Vito F, Bullitta S, Sepman H, Marfia GA, Centonze D (2015) Synaptopathy connects inflammation and neurodegeneration in multiple sclerosis. Nat Rev Neurol 11:711–724

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the professional staff at the Citigroup Biomedical Imaging Center of Weill Cornell Medical College, including, in alphabetical order, John W. Babich PhD, Jonathan Dyke PhD, Simon Morim, Amelia Ng, and Nelsie Pastrano-Redula. The authors also want to acknowledge Sneha Pandya and David Schlyer PhD for advisement on data analysis. The authors further acknowledge Sudhin A. Shah PhD with regard to health control subject recruitment and data sharing. The authors acknowledge Leorah Freeman MD for her thoughtful review of the manuscript. This conduct of the research was supported by in part through an investigator-initiated study supported by Biogen and the Weill Cornell Clinical and Translational Science Center (CTSC).

Funding

This work was supported by in part through an investigator-initiated study supported by Biogen Cambridge MA. (grant # 55000025) and from the Weill Cornell Clinical and Translational Science Center (CTSC), New York, NY (grant UL1 TR000456-06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan A. Gauthier.

Ethics declarations

Conflict of Interest

Dr. Kang reports no disclosures. Dr. Kaunzner reports no disclosures. Dr. Perumal reports no disclosures. Dr. Nealon reports no disclosures. Dr. Perumal has received consultant fees from Genzyme. Dr. Kothari reports no disclosures. Dr. Vartanian has received consultant fees from Biogen, Norvartis, and Genzyme as well as Celgene. Dr. Kuceyeski reports no disclosures. Hurtado Rúa reports no disclosures. Dr. Gauthier has grant support from Genzyme, Genentech, and Mallinckrodt and has also received consulting fees from Biogen, Genetech, and Celgene.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Supplement Fig. 1

Illustrate time activity curves of Pons with MS patients and HC. There is no significant difference in any time points. (JPG 39 kb)

ESM 2

(DOCX 59 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, Y., Rúa, S.M.H., Kaunzner, U.W. et al. A Multi-Ligand Imaging Study Exploring GABAergic Receptor Expression and Inflammation in Multiple Sclerosis. Mol Imaging Biol 22, 1600–1608 (2020). https://doi.org/10.1007/s11307-020-01501-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-020-01501-z

Key words

Navigation