Skip to main content
Log in

Edge Domain Walls in Ultrathin Exchange-Biased Films

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

We present an analysis of edge domain walls in exchange-biased ferromagnetic films appearing as a result of a competition between the stray field at the film edges and the exchange bias field in the bulk. We introduce an effective two-dimensional micromagnetic energy that governs the magnetization behavior in exchange-biased materials and investigate its energy minimizers in the strip geometry. In a periodic setting, we provide a complete characterization of global energy minimizers corresponding to edge domain walls. In particular, we show that energy minimizers are one-dimensional and do not exhibit winding. We then consider a particular thin-film regime for large samples and relatively strong exchange bias and derive a simple and comprehensive algebraic model describing the limiting magnetization behavior in the interior and at the boundary of the sample. Finally, we demonstrate that the asymptotic results obtained in the periodic setting remain true in the case of finite rectangular samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bader, S.D., Parkin, S.S.P.: Spintronics. Ann. Rev. Condens. Mat. Phys. 1, 71–88 (2010)

    Google Scholar 

  • Bethuel, F., Zheng, X.M.: Density of smooth functions between two manifolds in Sobolev spaces. J. Funct. Anal. 80, 60–75 (1988)

    MathSciNet  MATH  Google Scholar 

  • Bourgain, J., Brezis, H., Mironescu, P.: Lifting in Sobolev spaces. J. Anal. Math. 80, 37–86 (2000)

    MathSciNet  MATH  Google Scholar 

  • Brataas, A., Kent, A.D., Ohno, H.: Current-induced torques in magnetic materials. Nat. Mat. 11, 372–381 (2012)

    Google Scholar 

  • Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, Berlin (2011)

    MATH  Google Scholar 

  • Brown, W.F.: Micromagnetics. Interscience Tracts of Physics and Astronomy, vol. 18. Wiley, New York (1963)

    MATH  Google Scholar 

  • Capella, A., Melcher, C., Otto, F.: Wave-type dynamics in ferromagnetic thin films and the motion of Néel walls. Nonlinearity 20, 2519–2537 (2007)

    MathSciNet  MATH  Google Scholar 

  • Chermisi, M., Muratov, C.B.: One-dimensional Néel walls under applied external fields. Nonlinearity 26, 2935–2950 (2013)

    MathSciNet  MATH  Google Scholar 

  • Cho, H.S., Hou, C., Sun, M., Fujiwara, H.: Characteristics of 360\(^\circ \)-domain walls observed by magnetic force microscope in exchange-biased NiFe films. J. Appl. Phys. 85, 5160–5162 (1999)

    Google Scholar 

  • Dennis, C.L., Borges, R.P., Buda, L.D., Ebels, U., Gregg, J.F., Hehn, M., Jouguelet, E., Ounadjela, K., Petej, I., Prejbeanu, I.L., Thornton, M.J.: The defining length scales of mesomagnetism: a review. J. Phys.-Condens. Matter 14, R1175–R1262 (2002)

    Google Scholar 

  • DeSimone, A., Kohn, R.V., Müller, S., Otto, F.: Magnetic microstructures—a paradigm of multiscale problems. In ICIAM 99 (Edinburgh), pp. 175–190. Oxford University Press (2000)

  • DeSimone, A., Kohn, R.V., Müller, S., Otto, F.: Recent analytical developments in micromagnetics. In: Bertotti, G., Mayergoyz, I.D. (eds.) The Science of Hysteresis, volume 2 of Physical Modelling, Micromagnetics, and Magnetization Dynamics, vol. 2, pp. 269–381. Academic Press, Oxford (2006)

    Google Scholar 

  • Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136, 521–573 (2012)

    MathSciNet  MATH  Google Scholar 

  • E, W., Ren, W., Vanden-Eijnden, E.: Energy landscape and thermally activated switching of submicron-sized ferromagnetic elements. J. Appl. Phys. 93, 2275–2282 (2003)

  • Fidler, J., Schrefl, T.: Micromagnetic modelling—the current state of the art. J. Phys. D: Appl. Phys. 33, R135–R156 (2000)

    Google Scholar 

  • Garcia-Cervera, C.J., E, W.: Effective dynamics for ferromagnetic thin films. J. Appl. Phys. 90, 370–374 (2001)

    Google Scholar 

  • Hellman, F., et al.: Interface-induced phenomena in magnetism. Rev. Mod. Phys. 89, 025006 (2017)

    MathSciNet  Google Scholar 

  • Hirono, S., Nonaka, K., Hatakeyama, I.: Magnetization distribution analysis in the film edge region under a homogeneous field. J. Appl. Phys. 60, 3661–3670 (1986)

    Google Scholar 

  • Hornreich, R.M.: 90\(\,^{\circ }\) magnetization curling in thin films. J. Appl. Phys. 34, 1071–1072 (1963)

    Google Scholar 

  • Hornreich, R.M.: Magnetization curling in tapered edge films. J. Appl. Phys. 35, 816–817 (1964)

    Google Scholar 

  • Hubert, A., Schäfer, R.: Magnetic Domains. Springer, Berlin (1998)

    Google Scholar 

  • Ignat, R., Moser, R.: Néel walls with prescribed winding number and how a nonlocal term can change the energy landscape. J. Differ. Equ. 263, 5846–5901 (2017)

    MATH  Google Scholar 

  • Knüpfer, H., Muratov, C.B., Nolte, F.: Magnetic domains in thin ferromagnetic films with strong perpendicular anisotropy. Arch. Ration. Mech. Anal. 232, 727–761 (2019)

    MathSciNet  MATH  Google Scholar 

  • Kohn, R.V., Slastikov, V.V.: Another thin-film limit of micromagnetics. Arch. Ration. Mech. Anal. 178, 227–245 (2005)

    MathSciNet  MATH  Google Scholar 

  • Kohn, R.V., Slastikov, V.V.: Effective dynamics for ferromagnetic thin films: a rigorous justification. Proc. R. Soc. Lond. Ser. A 461, 143–154 (2005)

    MathSciNet  MATH  Google Scholar 

  • Kurzke, M.: Boundary vortices in thin magnetic films. Calc. Var. Partial Differ. Equ. 26, 1–28 (2006)

    MathSciNet  MATH  Google Scholar 

  • Lieb, E.H., Loss, M.: Analysis. American Mathematical Society, Providence (2010)

    MATH  Google Scholar 

  • Lund, R.G., Muratov, C.B., Slastikov, V.V.: One-dimensional in-plane edge domain walls in ultrathin ferromagnetic films. Nonlinearity 31, 728–754 (2018)

    MathSciNet  MATH  Google Scholar 

  • Mattheis, R., Ramstöck, K., McCord, J.: Formation and annihilation of edge walls in thin-film permalloy strips. IEEE Trans. Magn. 33, 3993–3995 (1997)

    Google Scholar 

  • Milisic, V., Razafison, U.: Weighted Sobolev spaces for the Laplace equation in periodic infinite strips. arXiv:1302.4253 (2013)

  • Modica, L.: The gradient theory of phase transitions and the minimal interface criterion. Arch. Ration. Mech. Anal. 98, 123–142 (1987)

    MathSciNet  MATH  Google Scholar 

  • Moser, R.: Boundary vortices for thin ferromagnetic films. Arch. Ration. Mech. Anal. 174, 267–300 (2004)

    MathSciNet  MATH  Google Scholar 

  • Muratov, C.B.: A universal thin film model for Ginzburg–Landau energy with dipolar interaction. Calc. Var. Partial Differ. Equ. 58, 52 (2019)

    MathSciNet  MATH  Google Scholar 

  • Muratov, C.B., Osipov, V.V.: Optimal grid-based methods for thin film micromagnetics simulations. J. Comput. Phys. 216, 637–653 (2006)

    MathSciNet  MATH  Google Scholar 

  • Muratov, C.B., Osipov, V.V.: Theory of \(360^\circ \) domain walls in thin ferromagnetic films. J. Appl. Phys. 104, 053908 (2008)

    Google Scholar 

  • Muratov, C.B., Slastikov, V.V.: Domain structure of ultrathin ferromagnetic elements in the presence of Dzyaloshinskii–Moriya interaction. Proc. R. Soc. Lond. Ser. A 473, 20160666 (2016)

    MathSciNet  MATH  Google Scholar 

  • Nogues, J., Sort, J., Langlais, V., Skumryev, V., Surinach, S., Munoz, J.S., Baro, M.D.: Exchange bias in nanostructures. Phys. Rep. 422, 65–117 (2005)

    Google Scholar 

  • Nonaka, K., Hirono, S., Hatakeyama, I.: Magnetostatic energy of magnetic thin-film edge having volume and surface charges. J. Appl. Phys. 58, 1610–1614 (1985)

    Google Scholar 

  • Ortner, C., Süli, E.: A note on linear elliptic systems on \({\mathbb{R}}^d\). arXiv:1202.3970v3 (2012)

  • Prinz, G.A.: Magnetoelectronics. Science 282, 1660–1663 (1998)

    Google Scholar 

  • Rebouças, G.O.G., Silva, A .S.W .T., Dantas, Ana L, Camley, R .E., Carriço, A .S.: Magnetic hysteresis of interface-biased flat iron dots. Phys. Rev. B 79, 104402 (2009)

    Google Scholar 

  • Rührig, M., Rave, W., Hubert, A.: Investigation of micromagnetic edge structures of double-layer permalloy films. J. Magn. Magn. Mater. 84, 102–108 (1990)

    Google Scholar 

  • Sandier, E., Shafrir, I.: On the symmetry of minimizing harmonic maps in \(n\) dimensions. Differ. Integral Equ. 6, 1531–1541 (1993)

    MathSciNet  MATH  Google Scholar 

  • Slastikov, V.V.: Micromagnetics of thin shells. Math. Models Methods Appl. Sci. 15, 1469–1487 (2005)

    MathSciNet  MATH  Google Scholar 

  • Soumyanarayanan, A., Reyren, N., Fert, A., Panagopoulos, C.: Emergent phenomena induced by spin-orbit coupling at surfaces and interfaces. Nature 539, 509–517 (2016)

    Google Scholar 

  • Wade, R.H.: Some factors in easy axis magnetization of permalloy films. Philos. Mag. 10, 49–66 (1964)

    Google Scholar 

Download references

Acknowledgements

R. G. Lund and C. B. Muratov were supported, in part, by NSF via Grants DMS-1313687 and DMS-1614948. V. Slastikov would like to acknowledge support from EPSRC Grant EP/K02390X/1 and Leverhulme Grant RPG-2014-226.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cyrill B. Muratov.

Additional information

Communicated by Dr. Anthony Bloch.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lund, R.G., Muratov, C.B. & Slastikov, V.V. Edge Domain Walls in Ultrathin Exchange-Biased Films. J Nonlinear Sci 30, 1165–1205 (2020). https://doi.org/10.1007/s00332-019-09604-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-019-09604-w

Keywords

Mathematics Subject Classification

Navigation