Skip to main content
Log in

A combined experimental and DFT/TD-DFT studies on the electronic structure, structural and optical properties of quinoline derivatives

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In this work, the structural, electronic, and optical features of quinoline derivatives were carried out by experiment and density functional theory (DFT). Our results show that a change in the substitution position of methyl group (CH3) gives rise to a decrease in the bandgap of quinoline derivatives from 2.75 to 2.50 eV for 2-Chloro-5,7-dimethylquinoline-3-carboxaldehyde (C7DMQCA) and 2-Chloro-5,7-dimethylquinoline-3-carboxaldehyde (C8DMQCA), respectively. From dipole moment, the C7DMQCA has stronger intermolecular interaction which is comparable with the bandgap energies. The absorbance maxima are found between 313 nm (3.96 eV) and 365 nm (3.39 eV) for C7DMQCA and C8DMQCA. The refractive index and optical conductivity of the C7DMQCA are found to be higher than that of the C8DMQCA. Besides, the transmittance, angle of incidence and refraction, and (αhϑ)2curves were investigated in detail. Theoretical predictions are also compatible with experimental findings. The study shows the C7DMQCA has desirable properties such as lower optical bandgap, higher refractive index, and optical conductivity than the C8DMQCA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Tu Q, Yin Z, Ma Y, Chen S-C, Zheng Q (2018). Dyes Pigments 149:747

    Article  CAS  Google Scholar 

  2. Xie C, You P, Liu Z, Li L, Yan F (2017). Light Sci Appl 6:e1702

    Article  Google Scholar 

  3. Lee W, Choi J, Jung JW (2019). Dyes Pigments 161:283

    Article  CAS  Google Scholar 

  4. Sio AD, Lienau C (2017). Phys Chem Chem Phys 19:18813

    Article  Google Scholar 

  5. Ameen MY, Abhijith T, Susmita D, Ray SK, Reddy VS (2013). Org Electron 14:554

    Article  Google Scholar 

  6. Cho MJ, Sim KM, Bae S-R, Choi HO, Kim SY, Chung DS, Park K (2018). Dyes Pigments 149:415

    Article  CAS  Google Scholar 

  7. Wang JB, Li WL, Chu B, Lee CS, Su ZS, Zhang G, Wu SH, Yan F (2011). Org Electron 12:34

    Article  CAS  Google Scholar 

  8. Aziz F, Sayyad MH, Sulaiman K, Mailis BY, Karimov KS, Ahmad Z, Sugandi G (2012). Meas Sci Technol 23:014001

    Article  Google Scholar 

  9. Murugavelu M, Imran PKM, Sankaran KR, Nagarajan S (2013). Mater Sci Semicond Process 16:461

    Article  CAS  Google Scholar 

  10. Liu D, Chu Y, Wu X, Huang J (2017). Science China Math 60:977

    Article  CAS  Google Scholar 

  11. Gillanders RN, Samuel IDW, Turnbull GA (2017). Sensor Actuat B-Chem 245:334

    Article  CAS  Google Scholar 

  12. Huang Y, Yuan R, Zhou S (2012). J Mater Chem 22:883

    Article  CAS  Google Scholar 

  13. Huang Y, Fu L, Zou W, Zhang F (2012). New J Chem 36:1080

    Article  Google Scholar 

  14. Slodek A, Zych D, Maroń A, Malecki JG, Golba S, Szafraniec-Gorol G, Pajak M (2019). Dyes Pigments 160:604

    Article  CAS  Google Scholar 

  15. Hamilton R, Smith J, Ogier S, Heeney M, Anthony JE, McCulloch I, Veres J, Bradley DDC, Anthopoulos TD (2009). Adv Mater 21:1166

    Article  CAS  Google Scholar 

  16. An TK, Park S-M, Nam S, Hwang J, Yoo S-J, Lee M-J et al (2013). Sci Adv Mater 5:1323

    Article  CAS  Google Scholar 

  17. Marella A, Tanwar OP, Saha R et al (2013). Saudi Pharm J 21:1

    Article  Google Scholar 

  18. Gorka AP, De Dios A, Roepe PD (2013). J Med Chem 56:5231

    Article  CAS  Google Scholar 

  19. Hisham S, Tajuddin HA, Chee CF, Hasan ZA, Abdullah Z (2019). J Lumin 208:245

    Article  CAS  Google Scholar 

  20. Rafiee MA, Hadipour NL, N-Manesh H (2004). J Comput Aided Mol Des 18:215

    Article  CAS  Google Scholar 

  21. Kharb R, Kaur H (2013). Int Res J Pharm 4:63

    Article  CAS  Google Scholar 

  22. Khan SA, Asiri AM, Al-Thaqafy SH, Aidallah HMF, El-Daly SA (2014). Spectrochim Acta 133:141

    Article  CAS  Google Scholar 

  23. Sangani CB, Makawana JA, Zhang X, Teraiya SC, Lin I, Zhu HL (2014). Eur J Med Chem 76:549

    Article  CAS  Google Scholar 

  24. Wang LY, Chen Q-W, Zhai G-H, Wen Z-Y, Zhang Z-X (2007). Dyes Pigments 72:357

    Article  CAS  Google Scholar 

  25. Mao M, Zhang X, Zhu B, Wang J, Wu G, Yin Y, Song Q (2016). Dyes Pigments 124:72

    Article  CAS  Google Scholar 

  26. Al-Busafi SN, Suliman FEO, Al-Alawi ZR (2014). Dyes Pigments 103:138

    Article  CAS  Google Scholar 

  27. Suliman FEO, Al-Busafi SN, Al-Risi M, Al-Badi KN (2012). Dyes Pigments 92:1153

    Article  CAS  Google Scholar 

  28. Kohn W, Sham LJ (1965). Phys Rev 140:A1133

    Article  Google Scholar 

  29. Becke AD (1988). Phys Rev A 38:3098

    Article  CAS  Google Scholar 

  30. Vosko SH, Vilk L, Nusair M (1980). Can J Phys 58:1200

    Article  CAS  Google Scholar 

  31. Lee C, Yang W, Parr RG (1988). Phys Rev B 37:785

    Article  CAS  Google Scholar 

  32. Yanai T, Tew DP, Handy NC (2004). Chem Pys Lett 393:51

    Article  CAS  Google Scholar 

  33. Foster ME, Wong BM (2012). J Chem Theory Comput 8:2682

    Article  CAS  Google Scholar 

  34. Kurban M (2018). Optik 172:295

    Article  CAS  Google Scholar 

  35. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, et al., Gaussian 09, Revision B.01; Gaussian, Inc., Wallingford CT, (2009)

  36. Roy Dennington TK and JM. Gauss View, Version 5, Semichem Inc, Shawnee Mission KS, 2009

  37. Gündüz B, Kurban M (2018). Vib Spectrosc 96(246):46

    Article  Google Scholar 

  38. Tauc J, Menth A (1972). J Non-Cryst Solids 569:8

    Google Scholar 

  39. Abeles F (1972) Optical properties of solids. North-Holland Publishing Company, London, Amsterdam

    Google Scholar 

  40. Tripathy SK (2015). Opt Mater 46:240

    Article  CAS  Google Scholar 

  41. Lee S, Jeong I, Kim HP, Hwang SY, Kim TJ, Kim YD, Jang J, Kim J (2013). Sol Energy Mater Sol Cells 118:9

    Article  CAS  Google Scholar 

  42. Adachi S (1999) Optical constants of crystalline and amorphous semiconductors. Kluwer Academic Publishers

  43. Pankov JI (1975) Optical Processes in Semiconductors. Dover, New York, p 91

    Google Scholar 

Download references

Acknowledgments

The numerical calculations were also partially performed at TUBITAK ULAKBIM, High Performance and Grid Computing Centre (TRUBA resources), Turkey.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Kurban.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurban, M., Sertbakan, T.R. & Gündüz, B. A combined experimental and DFT/TD-DFT studies on the electronic structure, structural and optical properties of quinoline derivatives. J Mol Model 26, 131 (2020). https://doi.org/10.1007/s00894-020-04405-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-04405-5

Keywords

Navigation