Skip to main content
Log in

Microwave-Assisted Acid Leaching for Recovery of Silicon from Diamond-Wire Cutting Waste Slurry

  • Recycling Silicon and Silicon Compounds
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The recovery of crystalline silicon from diamond-wire cutting waste with microwave-assisted hydrochloric acid leaching was studied. The experimental results indicated that the optimum conditions for the hydrochloric acid concentration, liquid–solid ratio, leaching time, leaching temperature and particle size were 2 mol/l, 6:1 ml/g, 10 min, 100 °C and 98 nm, respectively. Under optimal conditions, the purity of silicon could reach 99.57% because the polar molecule hydrochloric acid has a temperature effect, orientation effect and molecular rotation effect in microwave electromagnetic fields. For metal oxides with variable valences showing strong absorption of microwave irradiation, the leaching efficiencies of Al and Ca are not nearly as good as that of Fe. The kinetic experiment showed that the leaching of metal impurities (Al, Fe,Ca) in hydrochloric acid was controlled by the solid product layer diffusion, with apparent activation energies calculated to be 21.16 kJ/mol, 13.31 kJ/mol and 16.63 kJ/mol for Al, Fe and Ca, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. F.L. He, X.P. Ren, H.R. Cheng, and C. Chen, Adv. Mater. Res. 418, 1590 (2012).

    Google Scholar 

  2. F.L. He, S.S. Zheng, and C. Chen, Metall. Mater. Trans. B 43, 1011 (2012).

    Article  Google Scholar 

  3. P.F. Xing, J. Guo, Y.X. Zhuang, F. Li, and G.F. Tu, Int. J. Miner. Metall. Mater. 20, 974 (2013).

    Article  Google Scholar 

  4. A. Yoko and Y. Oshima, J. Supercrit. Fluids 75, 1 (2013).

    Article  Google Scholar 

  5. H.X. Lai, L.Q. Huang, C.H. Gan, P.F. Xing, J.T. Li, and X.T. Luo, Hydrometallurgy 164, 103 (2016).

    Article  Google Scholar 

  6. D. Kim, H. Kim, S. Lee, T. Lee, and H. Jeong, J. Mech. Sci. Technol. 30, 847 (2016).

    Article  Google Scholar 

  7. D.Y. Kim, T.K. Lee, C.J. Park, S.J. Lee, H.D. Jeong, and H.J. Kim, Int. J. Precis. Eng. Man. 19, 553 (2018).

    Article  Google Scholar 

  8. K. Hachichi, A. Lami, H. Zemmouri, P. Cuellar, R. Soni, H. Ait-Amar, and N. Drouiche, Silicon 10, 1579 (2018).

    Article  Google Scholar 

  9. X.G. Yu, P. Wang, X.Q. Li, and D. Yang, Sol. Energy Mater. Sol. Cells 98, 337 (2012).

    Article  Google Scholar 

  10. X.K. Chen, X.Z. Su, R.A. Chi, and J.X. Yu, Rare Metals 29, 327 (2010).

    Article  Google Scholar 

  11. K. Tomono, S. Miyamoto, T. Ogawa, H. Furuya, Y. Okamura, M. Yoshimoto, R. Komatsu, and M. Nakayama, Sep. Purif. Technol. 120, 304 (2013).

    Article  Google Scholar 

  12. W.T. Kwon, S.R. Kim, Y. Kim, Y.J. Lee, E. Jung, W.K. Park, and S.C. Oh, Mater. Sci. Forum 724, 49 (2012).

    Article  Google Scholar 

  13. M.D. Sousa, A. Vardelle, G. Mariaux, M. Vardelle, U. Michon, and V. Beudin, Sep. Purif. Technol. 161, 187 (2016).

    Article  Google Scholar 

  14. J. Kong, P.F. Xing, Y. Liu, J.Q. Wang, X. Jin, Z.B. Feng, and X.T. Luo, Silicon 11, 367 (2019).

    Article  Google Scholar 

  15. T. Wang, Y. Li, and J.L. Sun, Key Eng. Mater. 633, 125 (2015).

    Article  Google Scholar 

  16. P.Y. Shi, C.J. Liu, Q. Zhao, and H.N. Shi, Int. J. Miner. Metall. Mater. 24, 983 (2017).

    Article  Google Scholar 

  17. K. Onol and M.N. Saridede, Int. J. Miner. Metall. Mater. 20, 228 (2013).

    Article  Google Scholar 

  18. L.Y. Zhang, J.M. Mo, X.H. Li, L.P. Pan, and G.T. Wei, Russ. J. Non-ferr Met. 57, 301 (2016).

    Article  Google Scholar 

  19. X.K. Che, X.Z. Su, R.A. Chi, and J.X. Yu, Rare Met. 29, 327 (2010).

    Article  Google Scholar 

  20. Z.Y. Ma, H.Y. Yang, S.T. Huang, L. Yang, and X. Liu, Int. J. Miner. Metall. Mater. 22, 582 (2015).

    Article  Google Scholar 

  21. J. Kong, P.F. Xing, Y. Liu, J.Q. Wang, X. Jin, Z.B. Feng, and X.T. Luo, Silicon 11, 1 (2018).

    Google Scholar 

Download references

Acknowledgements

This research was financially supported by the Natural Science Project of Qinghai University Youth Foundation (2019-QGY-10) and Thousand Talents Program for High-end Talents of Qinghai Province (No. 724112).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng-nian Tie.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 85 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, Sy., Tie, Sn., Jiang, Mq. et al. Microwave-Assisted Acid Leaching for Recovery of Silicon from Diamond-Wire Cutting Waste Slurry. JOM 72, 2656–2662 (2020). https://doi.org/10.1007/s11837-020-04192-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04192-7

Navigation