Skip to main content
Log in

Cyclodextrin and cellulose combination product developed by click chemistry: fascinating design for inclusion of ciprofloxacin

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

In the current study, we introduce “click chemistry” as a powerful tool to tailor cyclodextrin–cellulose combination product followed by the inclusion of ciprofloxacin hydrochloride (CipHCl) as antibacterial agent. Initially, beta-cyclodextrin (β-CD) and cellulose fibers (CFs) were modified so as to be mono-6-propargylamino-6-deoxy-β-CD (Pro-β-CD) and azidated cellulose fibers (CFs-N3), respectively. Afterward, the “click reaction” was carried out between Pro-β-CD and CFs-N3 to fabricate a covalent grafting of β-CD onto CFs resulting in click product (CFs-N3@Pro-β-CD). The drug-delivery kinetics of the loaded CipHCl was performed by immersing samples into an aqueous solution, and the amount of adsorbed and released CipHCl was measured, as a function of time, by UV spectroscopy. Compared to original CFs, the load quantity of CipHCl into the click product was greatly increased, the release time of CipHCl from CFs-N3@Pro-β-CD was prolonged, and considerably higher antibacterial activity against E. coli and S. aureus was observed. The click product exhibited excellent antibacterial activity and sustained antibacterial efficacy up to 12 and 10 days against S. aureus and E. coli. The results showed that β-CD has been successfully grafted onto CFs via covalent bonds, while maintaining the intrinsic properties and the integrity of the fibers. Compared with the control paper sheet, the mechanical properties of the paper are well preserved.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abd Rahman NS, Ahmad NA, Yhaya MF, Azahari B, Ismail WR (2016) Crosslinking of fibers via azide–alkyne click chemistry: synthesis and characterization. J Appl Polym Sci 133:43576

    Google Scholar 

  • Abdel-Halim ES, Al-Deyab SS, Alfaifi AY (2014) Cotton fabric finished with beta-cyclodextrin: inclusion ability toward antimicrobial agent. Carbohydr Polym 102:550–556

    CAS  PubMed  Google Scholar 

  • Ares AM, Muiño R, Costoya A, Lorenzo RA, Concheiro A, Carro AM, Alvarez-Lorenzo C (2019) Cyclodextrin-functionalized cellulose filter paper for selective capture of diclofenac. Carbohydr Polym 220:43–52

    CAS  PubMed  Google Scholar 

  • Cai T, Neoh KG, Kang ET (2011) Poly(vinylidene fluoride) graft copolymer membranes with “clickable” surfaces and their functionalization. Macromolecules 44(11):4258–4268

    CAS  Google Scholar 

  • Cai Q, Yang S, Zhang C, Li Z, Li X, Shen Z, Zhu W (2018) Facile and versatile modification of cotton fibers for persistent antibacterial activity and enhanced hygroscopicity. ACS Appl Mater Interfaces 10(44):38506–38516

    CAS  PubMed  Google Scholar 

  • Carpenter BL, Scholle F, Sadeghifar H, Francis AJ, Boltersdorf J, Weare WW, Argyropoulos DS, Maggard PA, Ghiladi RA (2015) Synthesis, characterization, and antimicrobial efficacy of photomicrobicidal cellulose paper. Biomacromolecules 16(8):2482–2492

    CAS  PubMed  Google Scholar 

  • Castro DO, Tabary N, Martel B, Gandini A, Belgacem N, Bras J (2016) Effect of different carboxylic acids in cyclodextrin functionalization of cellulose nanocrystals for prolonged release of carvacrol. Mater Sci Eng C 69:1018–1025

    CAS  Google Scholar 

  • Celebioglu A, Demirci S, Uyar T (2014) Cyclodextrin-grafted electrospun cellulose acetate nanofibers via “click” reaction for removal of phenanthrene. Appl Surf Sci 305:581–588

    CAS  Google Scholar 

  • Chang C, Zhang L, Zhou J, Zhang L, Kennedy JF (2010) Structure and properties of hydrogels prepared from cellulose in NaOH/urea aqueous solutions. Carbohydr Polym 82(1):122–127

    CAS  Google Scholar 

  • Cova TF, Murtinho D, Pais A, Valente AJM (2018) Combining cellulose and cyclodextrins: fascinating designs for materials and pharmaceutics. Front Chem 6:271

    PubMed  PubMed Central  Google Scholar 

  • Crini G (2014) Review: a history of cyclodextrins. Chem Rev 114(21):10940–10975

    CAS  PubMed  Google Scholar 

  • Cusola O, Tabary N, Belgacem MN, Bras J (2013) Cyclodextrin functionalization of several cellulosic substrates for prolonged release of antibacterial agents. J Appl Polym Sci 129(2):604–613

    CAS  Google Scholar 

  • de Castro DO, Tabary N, Martel B, Gandini A, Belgacem N, Bras J (2018) Controlled release of carvacrol and curcumin: bio-based food packaging by synergism action of TEMPO-oxidized cellulose nanocrystals and cyclodextrin. Cellulose 25(2):1249–1263

    Google Scholar 

  • Del Valle EMM (2004) Cyclodextrins and their uses: a review. Process Biochem 39(9):1033–1046

    Google Scholar 

  • Ding C, Sun L, Xiao G, Qian X, An X (2017) Green and combinational method towards clickable alkynylated cellulose fibers (ACFs). Cellulose 24(8):3219–3229

    CAS  Google Scholar 

  • Dong C, Qian L-Y, Zhao G-L, He B-H, Xiao H-N (2014a) Preparation of antimicrobial cellulose fibers by grafting β-cyclodextrin and inclusion with antibiotics. Mater Lett 124:181–183

    CAS  Google Scholar 

  • Dong C, Ye Y, Qian L, Zhao G, He B, Xiao H (2014b) Antibacterial modification of cellulose fibers by grafting β-cyclodextrin and inclusion with ciprofloxacin. Cellulose 21(3):1921–1932

    CAS  Google Scholar 

  • Elchinger P-H, Montplaisir D, Zerrouki R (2012) Starch–cellulose crosslinking—towards a new material. Carbohydr Polym 87(2):1886–1890

    CAS  Google Scholar 

  • Elchinger P-H, Awada H, Zerrouki C, Montplaisir D, Zerrouki R (2014) Kraft pulp–starch covalent linking: A promising route to a new material. Ind Eng Chem Res 53(18):7604–7610

    CAS  Google Scholar 

  • Fallah Z, Nasr Isfahani H, Tajbakhsh M, Tashakkorian H, Amouei A (2017) TiO2-grafted cellulose via click reaction: an efficient heavy metal ions bioadsorbent from aqueous solutions. Cellulose 25(1):639–660

    Google Scholar 

  • Fatona A, Berry RM, Brook MA, Moran-Mirabal JM (2018) Versatile surface modification of cellulose fibers and cellulose nanocrystals through modular triazinyl chemistry. Chem Mater 30(7):2424–2435

    CAS  Google Scholar 

  • Gopakumar DA, Pai AR, Pottathara YB, Pasquini D, Carlos de Morais L, Luke M, Kalarikkal N, Grohens Y, Thomas S (2018) Cellulose nanofiber-based polyaniline flexible papers as sustainable microwave absorbers in the x-band. ACS Appl Mater Interfaces 10(23):20032–20043

    CAS  PubMed  Google Scholar 

  • Guan Y, Xiao H, Sullivan H, Zheng A (2007) Antimicrobial-modified sulfite pulps prepared by in situ copolymerization. Carbohydr Polym 69(4):688–696

    CAS  Google Scholar 

  • Guo Z, Jin Y, Liang T, Liu Y, Xu Q, Liang X, Lei A (2009) Synthesis, chromatographic evaluation and hydrophilic interaction/reversed-phase mixed-mode behavior of a "click beta-cyclodextrin" stationary phase. J Chromatogr A 1216(2):257–263

    CAS  PubMed  Google Scholar 

  • Guo J, Filpponen I, Johansson L-S, Heiβler S, Li L, Levkin P, Rojas OJ (2017) Micro-patterns on nanocellulose films and paper by photo-induced thiol–yne click coupling: a facile method toward wetting with spatial resolution. Cellulose 25(1):367–375

    Google Scholar 

  • Han Y, Zhang X, Wu X, Lu C (2015) Flame retardant, heat insulating cellulose aerogels from waste cotton fabrics by in situ formation of magnesium hydroxide nanoparticles in cellulose gel nanostructures. ACS Sustain Chem Eng 3(8):1853–1859

    CAS  Google Scholar 

  • Hiriart-Ramírez E, Contreras-García A, Garcia-Fernandez MJ, Concheiro A, Alvarez-Lorenzo C, Bucio E (2012) Radiation grafting of glycidyl methacrylate onto cotton gauzes for functionalization with cyclodextrins and elution of antimicrobial agents. Cellulose 19(6):2165–2177

    Google Scholar 

  • Huang X, Wang A, Xu X, Liu H, Shang S (2016) Enhancement of hydrophobic properties of cellulose fibers via grafting with polymeric epoxidized soybean oil. ACS Sustain Chem Eng 5(2):1619–1627

    Google Scholar 

  • Jazkewitsch O, Mondrzyk A, Staffel R, Ritter H (2011) Cyclodextrin-modified polyesters from lactones and from bacteria: an approach to new drug carrier systems. Macromolecules 44(6):1365–1371

    CAS  Google Scholar 

  • Kang Z-Z, Zhang B, Jiao Y-C, Xu Y-H, He Q-Z, Liang J (2012) High-efficacy antimicrobial cellulose grafted by a novel quaternarized N-halamine. Cellulose 20(2):885–893

    Google Scholar 

  • Kawano S, Kida T, Miyawaki K, Noguchi Y, Kato E, Nakano T, Akashi M (2014) Cyclodextrin polymers as highly effective adsorbents for removal and recovery of polychlorobiphenyl (PCB) contaminants in insulating oil. Environ Sci Technol 48(14):8094–8100

    CAS  PubMed  Google Scholar 

  • Khan AM, Shah SS (2009) pH induced partitioning and interactions of ciprofloxacin hydrochloride with anionic surfactant sodium dodecyl sulfate using ultraviolet and Fourier transformed infrared spectroscopy study. J Dispers Sci Technol 30(9):1247–1254

    CAS  Google Scholar 

  • Kolb HC, Finn MG, Sharpless KB (2001) Click chemistry: diverse chemical function from a few good reactions. Angew Chem 40:2004–2021

    CAS  Google Scholar 

  • Kontturi KS, Kontturi E, Laine J (2013) Specific water uptake of thin films from nanofibrillar cellulose. J Mater Chem A 1(43):13655

    CAS  Google Scholar 

  • Kontturi KS, Biegaj K, Mautner A, Woodward RT, Wilson BP, Johansson LS, Lee KY, Heng JYY, Bismarck A, Kontturi E (2017) Noncovalent surface modification of cellulose nanopapers by adsorption of polymers from aprotic solvents. Langmuir 33(23):5707–5712

    CAS  PubMed  Google Scholar 

  • Krouit M, Bras J, Belgacem MN (2008) Cellulose surface grafting with polycaprolactone by heterogeneous click-chemistry. Eur Polym J 44(12):4074–4081

    CAS  Google Scholar 

  • Lavoine N, Tabary N, Desloges I, Martel B, Bras J (2014) Controlled release of chlorhexidine digluconate using beta-cyclodextrin and microfibrillated cellulose. Colloid Surface B 121:196–205

    CAS  Google Scholar 

  • Lee MH, Yoon KJ, Ko S (2015) Grafting onto cotton fiber with acrylamidomethylated β-cyclodextrin and its application. J Appl Polym Sci 78(11):1986–1991

    Google Scholar 

  • Li JF, Zhang JX, Wang ZG, Yao YJ, Han X, Zhao YL, Liu JP, Zhang SQ (2017a) Identification of a cyclodextrin inclusion complex of antimicrobial peptide CM4 and its antimicrobial activity. Food Chem 221:296–301

    CAS  PubMed  Google Scholar 

  • Li X, Zhang K, Shi R, Ma X, Tan L, Ji Q, Xia Y (2017b) Enhanced flame-retardant properties of cellulose fibers by incorporation of acid-resistant magnesium-oxide microcapsules. Carbohydr Polym 176:246–256

    CAS  PubMed  Google Scholar 

  • Li J, Kang L, Wang B, Chen K, Tian X, Ge Z, Zeng J, Xu J, Gao W (2018) Controlled release and long-term antibacterial activity of dialdehyde nanofibrillated cellulose/silver nanoparticle composites. ACS Sustain Chem Eng 7(1):1146–1158

    Google Scholar 

  • Li Z, Liu W, Guan F, Li G, Song Z, Yu D, Wang H, Liu H (2019) Using cellulose fibers to fabricate transparent paper by microfibrillation. Carbohydr Polym 214:26–33

    CAS  PubMed  Google Scholar 

  • Liu W, Sun F, Jiang L, Meredith JC, Deng Y (2019) Surface structure patterning for fabricating non-fluorinated superhydrophobic cellulosic membranes. ACS Appl Polym Mater 1(5):1220–1229

    CAS  Google Scholar 

  • Mangiante G, Alcouffe P, Burdin B, Gaborieau M, Zeno E, Petit-Conil M, Bernard J, Charlot A, Fleury E (2013) Green nondegrading approach to alkyne-functionalized cellulose fibers and biohybrids thereof: synthesis and mapping of the derivatization. Biomacromolecules 14(1):254–263

    CAS  PubMed  Google Scholar 

  • Mao H, Dong Y, Qian X, An X (2017) Enhancement of bonding strength of polypyrrole/cellulose fiber (PPy/CF) hybrid through lignosulfonate doping. Cellulose 24(5):2255–2263

    CAS  Google Scholar 

  • Maver T, Maver U, Mostegel F, Griesser T, Spirk S, Smrke DM, Stana-Kleinschek K (2014) Cellulose based thin films as a platform for drug release studies to mimick wound dressing materials. Cellulose 22(1):749–761

    Google Scholar 

  • Medronho B, Andrade R, Vivod V, Ostlund A, Miguel MG, Lindman B, Voncina B, Valente AJ (2013) Cyclodextrin-grafted cellulose: physico-chemical characterization. Carbohydr Polym 93(1):324–330

    CAS  PubMed  Google Scholar 

  • Meng X, Edgar KJ (2016) “Click” reactions in polysaccharide modification. Prog Polym Sci 53:52–85

    CAS  Google Scholar 

  • Munteanu M, Choi S, Ritter H (2009) Cyclodextrin-click-cucurbit[6]uril: combi-receptor for supramolecular polymer systems in water. Macromolecules 42(12):3887–3891

    CAS  Google Scholar 

  • Nafie G, Vitale G, Carbognani Ortega L, Nassar NN (2017) Nanopyroxene grafting with beta-cyclodextrin monomer for wastewater applications. ACS Appl Mater Interfaces 9(48):42393–42407

    CAS  PubMed  Google Scholar 

  • Nongbe MC, Bretel G, Ekou L, Ekou T, Robitzer M, Le Grognec E, Felpin F-X (2018) Cellulose paper azide as a molecular platform for versatile click ligations: application to the preparation of hydrophobic paper surface. Cellulose 25(2):1395–1411

    CAS  Google Scholar 

  • Pan Y, Xiao H, Cai P, Colpitts M (2016) Cellulose fibers modified with nano-sized antimicrobial polymer latex for pathogen deactivation. Carbohydr Polym 135:94–100

    CAS  PubMed  Google Scholar 

  • Roy D, Knapp JS, Guthrie JT, Perrier S (2008) Antibacterial cellulose fiber via RAFT surface graft polymerization. Biomacromolecules 9(1):91–99

    CAS  PubMed  Google Scholar 

  • Sadeghifar H, Venditti R, Jur J, Gorga RE, Pawlak JJ (2016) Cellulose-lignin biodegradable and flexible UV protection film. ACS Sustain Chem Eng 5(1):625–631

    Google Scholar 

  • Saini S, Quinot D, Lavoine N, Belgacem MN, Bras J (2016) β-Cyclodextrin-grafted TEMPO-oxidized cellulose nanofibers for sustained release of essential oil. J Mater Sci 52(7):3849–3861

    Google Scholar 

  • Selvam S, Rajiv Gandhi R, Suresh J, Gowri S, Ravikumar S, Sundrarajan M (2012) Antibacterial effect of novel synthesized sulfated beta-cyclodextrin crosslinked cotton fabric and its improved antibacterial activities with ZnO, TiO2 and Ag nanoparticles coating. Int J Pharm 434(1–2):366–374

    CAS  PubMed  Google Scholar 

  • Singh R, Ho D, Lim LY, Iyer KS, Smith NM (2016) Colloidal polymeric platform for facile click-assisted ligand functionalization and receptor targeting. ACS Omega 1(6):1114–1120

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun L, Qian X, Ding C, An X (2018) Integration of graft copolymerization and ring-opening reaction: a mild and effective preparation strategy for ‘‘clickable’’ cellulose fibers. Carbohydr Polym 198:41–50

    CAS  PubMed  Google Scholar 

  • Sun L, Xiao G, Qian X, An X (2019a) Alkyne functionalized cellulose fibers: A versatile "clickable" platform for antibacterial materials. Carbohydr Polym 207:68–78

    CAS  PubMed  Google Scholar 

  • Sun L, Ding C, Qian X, An X (2019b) Effective and simple one-step strategy for preparation of “clickable” cellulose modules: support to build antibacterial materials. Cellulose 26(3):1961–1976

    CAS  Google Scholar 

  • Szejtli J (1998) Introduction and general overview of cyclodextrin chemistry. Chem Rev 98(5):1743–1754

    CAS  PubMed  Google Scholar 

  • Szente L, Szeman J (2013) Cyclodextrins in analytical chemistry: host–guest type molecular recognition. Anal Chem 85(17):8024–8030

    CAS  PubMed  Google Scholar 

  • Tungala K, Adhikary P, Krishnamoorthi S (2013) Trimerization of beta-cyclodextrin through the click reaction. Carbohydr Polym 95(1):295–298

    CAS  PubMed  Google Scholar 

  • Tyagi P, Mathew R, Opperman C, Jameel H, Gonzalez R, Lucia L, Hubbe M, Pal L (2019) High-strength antibacterial chitosan-cellulose nanocrystal composite tissue paper. Langmuir 35(1):104–112

    CAS  PubMed  Google Scholar 

  • Wang J, Cai Z (2008) Incorporation of the antibacterial agent, miconazole nitrate into a cellulosic fabric grafted with β-cyclodextrin. Carbohydr Polym 72(4):695–700

    CAS  Google Scholar 

  • Wang C, Qian X, An X (2015) In situ green preparation and antibacterial activity of copper-based metal–organic frameworks/cellulose fibers (HKUST-1/CF) composite. Cellulose 22(6):3789–3797

    CAS  Google Scholar 

  • Wei D, Li Z, Wang H, Liu J, Xiao H, Zheng A, Guan Y (2017) Antimicrobial paper obtained by dip-coating with modified guanidine-based particle aqueous dispersion. Cellulose 24(9):3901–3910

    CAS  Google Scholar 

  • Wittmar ASM, Fu Q, Ulbricht M (2017) Photocatalytic and magnetic porous cellulose-based nanocomposite films prepared by a green method. ACS Sustain Chem Eng 5(11):9858–9868

    CAS  Google Scholar 

  • Xiang Z, Chen Y, Liu Q, Lu F (2018) A highly recyclable dip-catalyst produced from palladium nanoparticle-embedded bacterial cellulose and plant fibers. Green Chem 20(5):1085–1094

    CAS  Google Scholar 

  • Xiao G, Ding C, Song F, Qian X, An X (2016) Facile strategy for preparation of alkyne-functionalized cellulose fibers with click reactivity. Cellulose 24(2):591–607

    Google Scholar 

  • Xu WZ, Gao G, Kadla JF (2013) Synthesis of antibacterial cellulose materials using a “clickable” quaternary ammonium compound. Cellulose 20(3):1187–1199

    CAS  Google Scholar 

  • Yan C, Liang N, Li Q, Yan P, Sun S (2019) Biotin and arginine modified hydroxypropyl-beta-cyclodextrin nanoparticles as novel drug delivery systems for paclitaxel. Carbohydr Polym 216:129–139

    CAS  PubMed  Google Scholar 

  • Yang H, van de Ven TG (2016) A bottom-uproute to a chemically end-to-end assembly of nanocellulose fibers. Biomacromolecules 17(6):2240–2247

    CAS  PubMed  Google Scholar 

  • Ye J, Liu H, Xiong J (2019) Preparation and properties of fluorescentcellulosic paper via surface coating of anionic cellulose ethers/rare earth metal ions composites. Ind Eng Chem Res 58(6):2370–2378

    CAS  Google Scholar 

  • Yu X, Tong S, Ge M, Wu L, Zuo J, Cao C, Song W (2013) Synthesis and characterization of multi-amino-functionalized cellulose for arsenic adsorption. Carbohydr Polym 92(1):380–387

    CAS  PubMed  Google Scholar 

  • Zhang K, Zong L, Tan Y, Ji Q, Yun W, Shi R, Xia Y (2016) Improve the flame retardancy of cellulose fibers by grafting zinc ion. Carbohydr Polym 136:121–127

    CAS  PubMed  Google Scholar 

  • Zhao D, Zhang Q, Chen W, Yi X, Liu S, Wang Q, Liu Y, Li J, Li X, Yu H (2017) Highly flexible and conductive cellulose-mediated PEDOT:PSS/MWCNT composite films for supercapacitor electrodes. ACS Appl Mater Interfaces 9(15):13213–13222

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the National Natural Science Foundation of China (Grant No. 31370579) for financial support to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueren Qian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, L., Yang, S., Qian, X. et al. Cyclodextrin and cellulose combination product developed by click chemistry: fascinating design for inclusion of ciprofloxacin. Cellulose 27, 5955–5970 (2020). https://doi.org/10.1007/s10570-020-03200-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-020-03200-y

Keywords

Navigation