Skip to main content
Log in

Pseudoprogression and Hyperprogression as New Forms of Response to Immunotherapy

  • Review Article
  • Published:
BioDrugs Aims and scope Submit manuscript

Abstract

Indications of immunotherapy in oncology are continuously expanding, and unconventional types of response have been observed with these new treatments. These include transient progressive disease followed by a partial response, described as pseudoprogression, that raises the question of treatment beyond progression; and rapid disease progression associated with clinical decline, reported as hyperprogression. However, there are currently no consensual definitions of these phenomena and their impact on daily practice remains unclear. We reviewed existing data on pseudoprogression and hyperprogression with a focus on the definitions, incidence, predictive factors, potential biological mechanisms, and methods published to help distinguish pseudoprogression from progression and hyperprogression. The incidence of pseudoprogression ranged from 0 to 15%, with some authors also including disease stabilization after a first progression. For hyperprogression, incidence ranged from 4 to 29% with various definitions, and several authors reported a correlation with worse survival. Both phenomena were observed in a large panel of cancer types. Several radiological and biological methods have been reported to help distinguish pseudoprogression from progression and hyperprogression, such as analysis of radiomics, and circulating-tumor DNA or cell-free DNA, but these need to be confirmed in larger prospective cohorts. In conclusion, pseudoprogression and hyperprogression are both frequent types of responses under immunotherapy, and there is a need to better characterize these to improve the management of cancer patients. Treatment beyond progression should always be considered with caution and necessitates close clinical monitoring. In case of suspected hyperprogression, immunotherapy should be stopped early.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ribas A, Wolchok JD. Cancer immunotherapy using checkpoint blockade. Science. 2018;359:1350–5. https://doi.org/10.1126/science.aar4060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363:711–23. https://doi.org/10.1056/NEJMoa1003466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Robert C, Long GV, Brady B, Dutriaux C, Maio M, Mortier L, et al. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med. 2015;372:320–30. https://doi.org/10.1056/NEJMoa1412082.

    Article  CAS  PubMed  Google Scholar 

  4. Borghaei H, Paz-Ares L, Horn L, Spigel DR, Steins M, Ready NE, et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med. 2015;373:1627–39. https://doi.org/10.1056/NEJMoa1507643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Brahmer J, Reckamp KL, Baas P, Crinò L, Eberhardt WEE, Poddubskaya E, et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med. 2015;373:123–35. https://doi.org/10.1056/NEJMoa1504627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Herbst RS, Baas P, Kim D-W, Felip E, Pérez-Gracia JL, Han J-Y, et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet. 2016;387:1540–50. https://doi.org/10.1016/S0140-6736(15)01281-7.

    Article  CAS  PubMed  Google Scholar 

  7. Ferris RL, Blumenschein G Jr, Fayette J, Guigay J, Colevas AD, Licitra L, et al. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med. 2016;375:1856–67. https://doi.org/10.1056/NEJMoa1602252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Motzer RJ, Escudier B, McDermott DF, George S, Hammers HJ, Srinivas S, et al. Nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl J Med. 2015;373:1803–13. https://doi.org/10.1056/NEJMoa1510665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bellmunt J, de Wit R, Vaughn DJ, Fradet Y, Lee J-L, Fong L, Vogelzang NJ, Climent MA, Petrylak DP, Choueiri TK, Necchi A, Gerritsen W, Gurn, et al. Pembrolizumab as second-line therapy for advanced urothelial carcinoma. N Engl J Med. 2017;376:1015–26. https://doi.org/10.1056/NEJMoa1613683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Motzer RJ, Tannir NM, McDermott DF, Frontera OA, Melichar B, Choueiri TK, et al. Nivolumab plus ipilimumab versus sunitinib in advanced renal-cell carcinoma. N Engl J Med. 2018;376:1015–26. https://doi.org/10.1056/NEJMoa1712126.

    Article  Google Scholar 

  11. Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Cowey CL, Lao CD, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373:23–34. https://doi.org/10.1056/NEJMoa1504030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gandhi L, Rodríguez-Abreu D, Gadgeel S, Esteban E, Felip E, De Angelis F, et al. Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer. N Engl J Med. 2018;378:2078–92. https://doi.org/10.1056/NEJMoa1801005.

    Article  CAS  PubMed  Google Scholar 

  13. Paz-Ares L, Luft A, Vicente D, Tafreshi A, Gümüş M, Mazières J, et al. Pembrolizumab plus chemotherapy for squamous non-small-cell lung cancer. N Engl J Med. 2018;379:2040–51. https://doi.org/10.1056/NEJMoa1810865.

    Article  CAS  PubMed  Google Scholar 

  14. Burtness B, Harrington KJ, Greil R, Soulières D, Tahara M, de Castro G, et al. Pembrolizumab alone or with chemotherapy versus cetuximab with chemotherapy for recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-048): a randomised, open-label, phase 3 study. Lancet. 2019;394:1915–28. https://doi.org/10.1016/S0140-6736(19)32591-7.

    Article  CAS  PubMed  Google Scholar 

  15. Borcoman E, Kanjanapan Y, Champiat S, Kato S, Servois V, Kurzrock R, et al. Novel patterns of response under immunotherapy. Ann Oncol. 2019;30:385–96. https://doi.org/10.1093/annonc/mdz003.

    Article  CAS  PubMed  Google Scholar 

  16. Wolchok JD, Hoos A, O’Day S, Weber JS, Hamid O, Lebbé C, et al. Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clin Cancer Res. 2009;15:7412–20. https://doi.org/10.1158/1078-0432.CCR-09-1624.

    Article  CAS  PubMed  Google Scholar 

  17. Champiat S, Dercle L, Ammari S, Massard C, Hollebecque A, Postel-Vinay S, et al. Hyperprogressive disease is a new pattern of progression in cancer patients treated by anti-PD-1/PD-L1. Clin Cancer Res. 2017;23:1920–8. https://doi.org/10.1158/1078-0432.CCR-16-1741.

    Article  CAS  PubMed  Google Scholar 

  18. Burzykowski T, Buyse M, Piccart-Gebhart MJ, Sledge G, Carmichael J, Lück H-J, et al. Evaluation of tumor response, disease control, progression-free survival, and time to progression as potential surrogate end points in metastatic breast cancer. J Clin Oncol. 2008;26:1987–92. https://doi.org/10.1200/JCO.2007.10.8407.

    Article  CAS  PubMed  Google Scholar 

  19. Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45:228–47. https://doi.org/10.1016/j.ejca.2008.10.026.

    Article  CAS  PubMed  Google Scholar 

  20. Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc J-F, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008;359:378–90. https://doi.org/10.1056/NEJMoa0708857.

    Article  CAS  PubMed  Google Scholar 

  21. Di Giacomo AM, Danielli R, Guidoboni M, Calabrò L, Carlucci D, Miracco C, et al. Therapeutic efficacy of ipilimumab, an anti-CTLA-4 monoclonal antibody, in patients with metastatic melanoma unresponsive to prior systemic treatments: clinical and immunological evidence from three patient cases. Cancer Immunol Immunother. 2009;58:1297–306. https://doi.org/10.1007/s00262-008-0642-y.

    Article  CAS  PubMed  Google Scholar 

  22. Chiou VL, Burotto M. Pseudoprogression and immune-related response in solid tumors. J Clin Oncol. 2015;33:3541–3. https://doi.org/10.1200/JCO.2015.61.6870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Vaflard P, Paoletti X, Servois V, Pons-Tostivint E, Sablin MP, Ricci F, et al. Dissociated responses in patients with metastatic solid tumours treated with immunotherapy. Poster session presented at ESMO 2019. Ann Oncol. 2019;30(suppl_5):v475–v532. https://doi.org/10.1093/annonc/mdz253.107.

    Article  Google Scholar 

  24. Hodi FS, Hwu W-J, Kefford R, Weber JS, Daud A, Hamid O, et al. Evaluation of immune-related response criteria and RECIST v1.1 in patients with advanced melanoma treated with pembrolizumab. J Clin Oncol. 2016;34:1510–7. https://doi.org/10.1200/JCO.2015.64.0391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Seymour L, Bogaerts J, Perrone A, Ford R, Schwartz LH, Mandrekar S, et al. iRECIST: guidelines for response criteria for use in trials testing immunotherapeutics. Lancet Oncol. 2017;18:e143–e152152. https://doi.org/10.1016/S1470-2045(17)30074-8.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hodi FS, Ballinger M, Lyons B, Soria J-C, Nishino M, Tabernero J, et al. Immune-modified response evaluation criteria in solid tumors (imRECIST): refining guidelines to assess the clinical benefit of cancer immunotherapy. J Clin Oncol. 2018;36:850–8. https://doi.org/10.1200/JCO.2017.75.1644.

    Article  PubMed  Google Scholar 

  27. Weber JS, D’Angelo SP, Minor D, Hodi FS, Gutzmer R, Neyns B, et al. Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial. Lancet Oncol. 2015;16:375–84. https://doi.org/10.1016/S1470-2045(15)70076-8.

    Article  CAS  PubMed  Google Scholar 

  28. Long GV, Weber JS, Larkin J, Atkinson V, Grob J-J, Schadendorf D, et al. Nivolumab for patients with advanced melanoma treated beyond progression: analysis of 2 phase 3 clinical trials. JAMA Oncol. 2017;3:1511–9. https://doi.org/10.1001/jamaoncol.2017.1588.

    Article  PubMed  PubMed Central  Google Scholar 

  29. O’Day SJ, Maio M, Chiarion-Sileni V, Gajewski TF, Pehamberger H, Bondarenko IN, et al. Efficacy and safety of ipilimumab monotherapy in patients with pretreated advanced melanoma: a multicenter single-arm phase II study. Ann Oncol. 2010;21:1712–7. https://doi.org/10.1093/annonc/mdq013.

    Article  PubMed  Google Scholar 

  30. Nishino M, Giobbie-Hurder A, Manos MP, Bailey N, Buchbinder EI, Ott PA, et al. Immune-related tumor response dynamics in melanoma patients treated with pembrolizumab: identifying markers for clinical outcome and treatment decisions. Clin Cancer Res. 2017;23:4671–9. https://doi.org/10.1158/1078-0432.CCR-17-0114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Topalian SL, Sznol M, McDermott DF, Kluger HM, Carvajal RD, Sharfman WH, et al. Survival, durable tumor remission, and long-term safety in patients with advanced melanoma receiving nivolumab. J Clin Oncol. 2014;32:1020–30. https://doi.org/10.1200/JCO.2013.53.0105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gandara DR, von Pawel J, Mazieres J, Sullivan R, Helland Å, Han J-Y, et al. Atezolizumab treatment beyond progression in advanced NSCLC: results from the randomized, Phase III OAK study. J Thorac Oncol. 2018;13:1906–18. https://doi.org/10.1016/j.jtho.2018.08.2027.

    Article  CAS  PubMed  Google Scholar 

  33. Kazandjian D, Keegan P, Suzman DL, Pazdur R, Blumenthal GM. Characterization of outcomes in patients with metastatic non-small cell lung cancer treated with programmed cell death protein 1 inhibitors past RECIST version 1.1-defined disease progression in clinical trials. Semin Oncol. 2017;44:3–7. https://doi.org/10.1053/j.seminoncol.2017.01.001.

    Article  CAS  PubMed  Google Scholar 

  34. Katz SI, Hammer M, Bagley SJ, Aggarwal C, Bauml JM, Thompson JC, et al. Radiologic pseudoprogression during anti-PD-1 therapy for advanced non-small cell lung cancer. J Thorac Oncol. 2018;13:978–86. https://doi.org/10.1016/j.jtho.2018.04.010.

    Article  PubMed  Google Scholar 

  35. Tazdait M, Mezquita L, Lahmar J, Ferrara R, Bidault F, Ammari S, et al. Patterns of responses in metastatic NSCLC during PD-1 or PDL-1 inhibitor therapy: Comparison of RECIST 1.1, irRECIST and iRECIST criteria. Eur J Cancer. 2018;88:38–47. https://doi.org/10.1016/j.ejca.2017.10.017.

    Article  CAS  PubMed  Google Scholar 

  36. Gettinger SN, Horn L, Gandhi L, Spigel DR, Antonia SJ, Rizvi NA, et al. Overall survival and long-term safety of nivolumab (anti-programmed death 1 antibody, BMS-936558, ONO-4538) in patients with previously treated advanced non-small-cell lung cancer. J Clin Oncol. 2015;33:2004–122. https://doi.org/10.1200/JCO.2014.58.3708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nishino M, Ramaiya NH, Chambers ES, Adeni AE, Hatabu H, Jänne PA, et al. Immune-related response assessment during PD-1 inhibitor therapy in advanced non-small-cell lung cancer patients. J Immunother Cancer. 2016;4:84. https://doi.org/10.1186/s40425-016-0193-2.

    Article  PubMed  PubMed Central  Google Scholar 

  38. George S, Motzer RJ, Hammers HJ, Redman BG, Kuzel TM, Tykodi SS, et al. Safety and efficacy of nivolumab in patients with metastatic renal cell carcinoma treated beyond progression: a subgroup analysis of a randomized clinical trial. JAMA Oncol. 2016;2:1179–86. https://doi.org/10.1001/jamaoncol.2016.0775.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Escudier B, Motzer RJ, Sharma P, Wagstaff J, Plimack ER, Hammers HJ, et al. Treatment beyond progression in patients with advanced renal cell carcinoma treated with nivolumab in CheckMate 025. Eur Urol. 2017;72:368–76. https://doi.org/10.1016/j.eururo.2017.03.037.

    Article  CAS  PubMed  Google Scholar 

  40. Sharma P, Retz M, Siefker-Radtke A, Baron A, Necchi A, Bedke J, et al. Nivolumab in metastatic urothelial carcinoma after platinum therapy (CheckMate 275): a multicentre, single-arm, phase 2 trial. Lancet Oncol. 2017;18:312–22. https://doi.org/10.1016/S1470-2045(17)30065-7.

    Article  CAS  PubMed  Google Scholar 

  41. Necchi A, Joseph RW, Loriot Y, Hoffman-Censits J, Perez-Gracia JL, Petrylak DP, et al. Atezolizumab in platinum-treated locally advanced or metastatic urothelial carcinoma: post-progression outcomes from the phase II IMvigor210 study. Ann Oncol. 2017;28:3044–50. https://doi.org/10.1093/annonc/mdx518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Haddad R, Concha-Benavente F, Blumenschein G, Fayette J, Guigay J, Colevas AD, et al. Nivolumab treatment beyond RECIST-defined progression in recurrent or metastatic squamous cell carcinoma of the head and neck in CheckMate 141: a subgroup analysis of a randomized phase 3 clinical trial. Cancer. 2019;125:3208–18. https://doi.org/10.1002/cncr.32190.

    Article  CAS  PubMed  Google Scholar 

  43. Chubachi S, Yasuda H, Irie H, Fukunaga K, Naoki K, Soejima K, et al. A case of non-small cell lung cancer with possible “disease flare” on nivolumab treatment. Case Rep Oncol Med. 2016;2016:1075641. https://doi.org/10.1155/2016/1075641.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ferrara R, Mezquita L, Texier M, Lahmar J, Audigier-Valette C, Tessonnier L, et al. Hyperprogressive disease in patients with advanced non-small cell lung cancer treated with PD-1/PD-L1 inhibitors or with single-agent chemotherapy. JAMA Oncol. 2018;4:1543–52. https://doi.org/10.1001/jamaoncol.2018.3676.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Kanjanapan Y, Day D, Wang L, Al-Sawaihey H, Abbas E, Namini A, et al. Hyperprogressive disease in early-phase immunotherapy trials: clinical predictors and association with immune-related toxicities. Cancer. 2019;125:1341–9. https://doi.org/10.1002/cncr.31999.

    Article  CAS  PubMed  Google Scholar 

  46. Kim CG, Kim KH, Pyo K-H, Xin C-F, Hong MH, Ahn B-C, et al. Hyperprogressive disease during PD-1/PD-L1 blockade in patients with non-small-cell lung cancer. Ann Oncol. 2019;30:1104–13. https://doi.org/10.1093/annonc/mdz123.

    Article  CAS  PubMed  Google Scholar 

  47. Saâda-Bouzid E, Defaucheux C, Karabajakian A, Coloma VP, Servois V, Paoletti X, et al. Hyperprogression during anti-PD-1/PD-L1 therapy in patients with recurrent and/or metastatic head and neck squamous cell carcinoma. Ann Oncol. 2017;28:1605–11. https://doi.org/10.1093/annonc/mdx178.

    Article  PubMed  Google Scholar 

  48. Sasaki A, Nakamura Y, Mishima S, Kawazoe A, Kuboki Y, Bando H, et al. Predictive factors for hyperprogressive disease during nivolumab as anti-PD1 treatment in patients with advanced gastric cancer. Gastric Cancer. 2019;22:793–802. https://doi.org/10.1007/s10120-018-00922-8.

    Article  CAS  PubMed  Google Scholar 

  49. Kato S, Goodman A, Walavalkar V, Barkauskas DA, Sharabi A, Kurzrock R. Hyper-progressors after immunotherapy: analysis of genomic alterations associated with accelerated growth rate. Clin Cancer Res. 2017;23:4242–50. https://doi.org/10.1158/1078-0432.CCR-16-3133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Matos I. Incidence and clinical implications of a new definition of hyperprogression (HPD) with immune checkpoint inhibitors (ICIs) in patients treated in phase 1 (Ph1) trials. Poster session presented at: ASCO 2018. J Clin Oncol. 2018;36(15):3032–3032. https://doi.org/10.1200/JCO.2018.36.15_suppl.3032.

    Article  Google Scholar 

  51. Russo GL, Moro M, Sommariva M, Cancila V, Boeri M, Centonze G, et al. Antibody-Fc/FcR interaction on macrophages as a mechanism for hyperprogressive disease in non-small cell lung cancer subsequent to PD-1/PD-L1 blockade. Clin Cancer Res. 2018;25:989–99. https://doi.org/10.1158/1078-0432.CCR-18-1390.

    Article  PubMed  Google Scholar 

  52. Tunali I, Gray JE, Qi J, Abdalah M, Jeong DK, Guvenis A, et al. Novel clinical and radiomic predictors of rapid disease progression phenotypes among lung cancer patients treated with immunotherapy: an early report. Lung Cancer. 2019;129:75–9. https://doi.org/10.1016/j.lungcan.2019.01.010.

    Article  PubMed  Google Scholar 

  53. Garrido-Laguna I, Janku F, Vaklavas C, Falchook GS, Fu S, Hong DS, et al. Validation of the Royal Marsden Hospital prognostic score in patients treated in the Phase I Clinical Trials Program at the MD Anderson Cancer Center. Cancer. 2012;118:1422–8. https://doi.org/10.1002/cncr.26413.

    Article  PubMed  Google Scholar 

  54. Bigot F, Castanon E, Baldini C, Hollebecque A, Carmona A, Postel-Vinay S, et al. Prospective validation of a prognostic score for patients in immunotherapy phase I trials: the Gustave Roussy Immune Score (GRIm-Score). Eur J Cancer. 2017;84:212–8. https://doi.org/10.1016/j.ejca.2017.07.027.

    Article  CAS  PubMed  Google Scholar 

  55. Mezquita L, Auclin E, Ferrara R, Charrier M, Remon J, Planchard D, et al. Association of the lung immune prognostic index with immune checkpoint inhibitor outcomes in patients with advanced non-small cell lung cancer. JAMA Oncol. 2018;4:351–7. https://doi.org/10.1001/jamaoncol.2017.4771.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Kim JY, Lee KH, Kang J, Borcoman E, Saada-Bouzid E, Kronbichler A, et al. Hyperprogressive disease during anti-PD-1 (PDCD1)/PD-L1 (CD274) therapy: a systematic review and meta-analysis. Cancers. 2019;11:1699. https://doi.org/10.3390/cancers11111699.

    Article  CAS  PubMed Central  Google Scholar 

  57. Stein RG, Ebert S, Schlahsa L, Scholz CJ, Braun M, Hauck P, et al. Cognate non-lytic interactions between CD8+ T cells and breast cancer cells induce cancer stem cell-like properties. Cancer Res. 2019;79:1507–19. https://doi.org/10.1158/0008-5472.CAN-18-0387.

    Article  CAS  PubMed  Google Scholar 

  58. Du S, McCall N, Park K, Guan Q, Fontina P, Ertel A, et al. Blockade of tumor-expressed PD-1 promotes lung cancer growth. Oncoimmunology. 2018;7:e1408747. https://doi.org/10.1080/2162402X.2017.1408747.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Kamada T, Togashi Y, Tay C, Ha D, Sasaki A, Nakamura Y, et al. PD-1+ regulatory T cells amplified by PD-1 blockade promote hyperprogression of cancer. Proc Natl Acad Sci USA. 2019;116:9999–10008. https://doi.org/10.1073/pnas.1822001116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kuriyama Y, Kim YH, Nagai H, Ozasa H, Sakamori Y, Mishima M. Disease flare after discontinuation of crizotinib in anaplastic lymphoma kinase-positive lung cancer. Case Rep Oncol. 2013;6:430–3. https://doi.org/10.1159/000354756.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Chaft JE, Oxnard GR, Sima CS, Kris MG, Miller VA, Riely GJ. Disease flare after tyrosine kinase inhibitor discontinuation in patients with EGFR-mutant lung cancer and acquired resistance to erlotinib or gefitinib: implications for clinical trial design. Clin Cancer Res. 2011;17:6298–303. https://doi.org/10.1158/1078-0432.CCR-11-1468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Iacovelli R, Massari F, Albiges L, Loriot Y, Massard C, Fizazi K, et al. Evidence and clinical relevance of tumor flare in patients who discontinue tyrosine kinase inhibitors for treatment of metastatic renal cell carcinoma. Eur Urol. 2015;68:154–60. https://doi.org/10.1016/j.eururo.2014.10.034.

    Article  PubMed  Google Scholar 

  63. Socinski MA, Jotte RM, Cappuzzo F, Orlandi F, Stroyakovskiy D, Nogami N, et al. Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC. N Engl J Med. 2018;378:2288–301. https://doi.org/10.1056/NEJMoa1716948.

    Article  CAS  PubMed  Google Scholar 

  64. Borghaei H, Langer CJ, Gadgeel S, Papadimitrakopoulou VA, Patnaik A, Powell SF, et al. 24-month overall survival from KEYNOTE-021 cohort G: pemetrexed and carboplatin with or without pembrolizumab as first-line therapy for advanced nonsquamous non-small cell lung cancer. J Thorac Oncol. 2019;14:124–9. https://doi.org/10.1016/j.jtho.2018.08.004.

    Article  CAS  PubMed  Google Scholar 

  65. Wang Q, Gao J, Wu X. Pseudoprogression and hyperprogression after checkpoint blockade. Int Immunopharmacol. 2018;58:125–35. https://doi.org/10.1016/j.intimp.2018.03.018.

    Article  CAS  PubMed  Google Scholar 

  66. Rittmeyer A, Barlesi F, Waterkamp D, Park K, Ciardiello F, von Pawel J, et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial. Lancet. 2017;389:255–65. https://doi.org/10.1016/S0140-6736(16)32517-X.

    Article  PubMed  Google Scholar 

  67. Masuhiro K, Shiroyama T, Nagatomo I, Kumanogoh A. Unique case of pseudoprogression manifesting as lung cavitation after pembrolizumab treatment. J Thorac Oncol. 2019;14:e108–e109109. https://doi.org/10.1016/j.jtho.2018.12.024.

    Article  PubMed  Google Scholar 

  68. Asai M, Kato Y, Kawai S, Watanabe K, Yomota M, Okuma Y, et al. Management of cardiac tamponade during nivolumab of lung cancer with intrapericardial bleomycin: case report. Immunotherapy. 2019;11:467–72. https://doi.org/10.2217/imt-2019-0003.

    Article  CAS  PubMed  Google Scholar 

  69. Kurman JS, Murgu SD. Hyperprogressive disease in patients with non-small cell lung cancer on immunotherapy. J Thorac Dis. 2018;10:1124–8. https://doi.org/10.21037/jtd.2018.01.79.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Tanizaki J, Hayashi H, Kimura M, Tanaka K, Takeda M, Shimizu S, et al. Report of two cases of pseudoprogression in patients with non-small cell lung cancer treated with nivolumab-including histological analysis of one case after tumor regression. Lung Cancer. 2016;102:44–8. https://doi.org/10.1016/j.lungcan.2016.10.014.

    Article  PubMed  Google Scholar 

  71. Anagnostou V, Yarchoan M, Hansen AR, Wang H, Verde F, et al. Immuno-oncology trial endpoints: capturing clinically meaningful activity. Clin Cancer Res. 2017;23:4959–69. https://doi.org/10.1158/1078-0432.CCR-16-3065.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Khorrami M, Prasanna P, Gupta A, Patil P, Velu PD, Thawani R, et al. Changes in CT radiomic features associated with lymphocyte distribution predict overall survival and response to immunotherapy in non-small cell lung cancer. Cancer Immunol Res. 2019;8:108–19. https://doi.org/10.1158/2326-6066.CIR-19-0476.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Trebeschi S, Drago SG, Birkbak NJ, Kurilova I, Cǎlin AM, Pizzi AD, et al. Predicting response to cancer immunotherapy using non-invasive radiomic biomarkers. Ann Oncol. 2019;30:998–1004. https://doi.org/10.1093/annonc/mdz108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Sun R, Limkin EJ, Vakalopoulou M, Dercle L, Champiat S, Han SR, et al. A radiomics approach to assess tumour-infiltrating CD8 cells and response to anti-PD-1 or anti-PD-L1 immunotherapy: an imaging biomarker, retrospective multicohort study. Lancet Oncol. 2018;19:1180–91. https://doi.org/10.1016/S1470-2045(18)30413-3.

    Article  CAS  PubMed  Google Scholar 

  75. Sanmamed MF, Perez-Gracia JL, Schalper KA, Fusco JP, Gonzalez A, Rodriguez-Ruiz ME, et al. Changes in serum interleukin-8 (IL-8) levels reflect and predict response to anti-PD-1 treatment in melanoma and non-small-cell lung cancer patients. Ann Oncol. 2017;28:1988–95. https://doi.org/10.1093/annonc/mdx190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lipson EJ, Velculescu VE, Pritchard TS, Sausen M, Pardoll DM, Topalian SL, et al. Circulating tumor DNA analysis as a real-time method for monitoring tumor burden in melanoma patients undergoing treatment with immune checkpoint blockade. J Immunother Cancer. 2014;2:42. https://doi.org/10.1186/s40425-014-0042-0.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Lee JH, Long GV, Boyd S, Lo S, Menzies AM, Tembe V, et al. Circulating tumour DNA predicts response to anti-PD1 antibodies in metastatic melanoma. Ann Oncol. 2017;28:1130–6. https://doi.org/10.1093/annonc/mdx026.

    Article  CAS  PubMed  Google Scholar 

  78. Lee JH, Long GV, Menzies AM, Lo S, Guminski A, Whitbourne K, et al. Association between circulating tumor DNA and pseudoprogression in patients with metastatic melanoma treated with anti-programmed cell death 1 antibodies. JAMA Oncol. 2018;4:717–21. https://doi.org/10.1001/jamaoncol.2017.5332.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Cabel L, Riva F, Servois V, Livartowski A, Daniel C, Rampanou A, et al. Circulating tumor DNA changes for early monitoring of anti-PD1 immunotherapy: a proof-of-concept study. Ann Oncol. 2017;28:1996–2001. https://doi.org/10.1093/annonc/mdx212.

    Article  CAS  PubMed  Google Scholar 

  80. Weiss GJ, Beck J, Braun DP, Bornemann-Kolatzki K, Barilla H, Cubello R, et al. Tumor cell-free DNA copy number instability predicts therapeutic response to immunotherapy. Clin Cancer Res. 2017;23:5074–81. https://doi.org/10.1158/1078-0432.CCR-17-0231.

    Article  CAS  PubMed  Google Scholar 

  81. Jensen TJ, Goodman AM, Kato S, Ellison CK, Daniels GA, Kim L, et al. Genome-wide sequencing of cell-free DNA identifies copy-number alterations that can be used for monitoring response to immunotherapy in cancer patients. Mol Cancer Ther. 2019;18:448–58. https://doi.org/10.1158/1535-7163.MCT-18-0535.

    Article  CAS  PubMed  Google Scholar 

  82. Ogawara D, Soda H, Iwasaki K, Suyama T, Taniguchi H, Fukuda Y, et al. Remarkable response of nivolumab-refractory lung cancer to salvage chemotherapy. Thorac Cancer. 2018;9:175–80. https://doi.org/10.1111/1759-7714.12543.

    Article  CAS  PubMed  Google Scholar 

  83. Schvartsman G, Peng SA, Bis G, Lee JJ, Benveniste MFK, Zhang J, et al. Response rates to single-agent chemotherapy after exposure to immune checkpoint inhibitors in advanced non-small cell lung cancer. Lung Cancer. 2017;112:90–5. https://doi.org/10.1016/j.lungcan.2017.07.034.

    Article  PubMed  Google Scholar 

  84. Park SE, Lee SH, Ahn JS, Ahn M-J, Park K, Sun J-M. Increased response rates to salvage chemotherapy administered after PD-1/PD-L1 inhibitors in patients with non-small cell lung cancer. J Thorac Oncol. 2018;13:106–11. https://doi.org/10.1016/j.jtho.2017.10.011.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edith Borcoman.

Ethics declarations

Funding

No external funding was used in the preparation of this manuscript.

Conflict of interest

Christophe Le Tourneau has participated in advisory boards from MSD, BMS, Merck Serono, Astra Zeneca, Roche, Novartis, Amgen, Nanobiotix, Celgene, and Rakuten. Maxime Frelaut, Pauline du Rusquec, Alexandre de Moura, and Edith Borcoman declare that they have no conflicts of interest that might be relevant to the contents of this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frelaut, M., du Rusquec, P., de Moura, A. et al. Pseudoprogression and Hyperprogression as New Forms of Response to Immunotherapy. BioDrugs 34, 463–476 (2020). https://doi.org/10.1007/s40259-020-00425-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40259-020-00425-y

Navigation